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Preface

These notes grew from an introduction to probability theory taught during
the first and second term of 1994 at Caltech. There was a mixed audience of
undergraduates and graduate students in the first half of the course which
covered Chapters 2 and 3, and mostly graduate students in the second part
which covered Chapter 4 and two sections of Chapter 5.

Having been online for many years on my personal web sites, the text got
reviewed, corrected and indexed in the summer of 2006. It obtained some
enhancements which benefited from some other teaching notes and research,
I wrote while teaching probability theory at the University of Arizona in
Tucson or when incorporating probability in calculus courses at Caltech
and Harvard University.

Most of Chapter 2 is standard material and subject of virtually any course
on probability theory. Also Chapters 3 and 4 is well covered by the litera-
ture but not in this combination.

The last chapter “selected topics” got considerably extended in the summer
of 2006.While in the original course, only localization and percolation prob-
lems were included, I added other topics like estimation theory, Vlasov dy-
namics, multi-dimensional moment problems, random maps, circle-valued
random variables, the geometry of numbers, Diophantine equations and
harmonic analysis. Some of this material is related to research I got inter-
ested in over time.

While the text assumes no prerequisites in probability, a basic exposure to
calculus and linear algebra is necessary. Some real analysis as well as some
background in topology and functional analysis can be helpful.

I would like to get feedback from readers. I plan to keep this text alive and
update it in the future. You can email this to knill@math.harvard.edu and
also indicate on the email if you don’t want your feedback to be acknowl-
edged in an eventual future edition of these notes.
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4 Contents

To get a more detailed and analytic exposure to probability, the students
of the original course have consulted the book [109] which contains much
more material than covered in class. Since my course had been taught,
many other books have appeared. Examples are [20, 34].

For a less analytic approach, see [40, 94, 100] or the still excellent classic
[25]. For an introduction to martingales, we recommend [113] and [47] from
both of which these notes have benefited a lot and to which the students
of the original course had access too.

For Brownian motion, we refer to [74, 67], for stochastic processes to [16],
for stochastic differential equation to [2, 55, 77, 67, 46], for random walks
to [103], for Markov chains to [26, 90], for entropy and Markov operators
[62]. For applications in physics and chemistry, see [111].

For the selected topics, we followed [32] in the percolation section. The
books [104, 30] contain introductions to Vlasov dynamics. The book of [1]
gives an introduction for the moment problem, [76, 65] for circle-valued
random variables, for Poisson processes, see [49, 9]. For the geometry of
numbers for Fourier series on fractals [45].

The book [114] contains examples which challenge the theory with counter
examples. [33, 95, 71] are sources for problems with solutions.

Probability theory can be developed using nonstandard analysis on finite
probability spaces [75]. The book [42] breaks some of the material of the
first chapter into attractive stories. Also texts like [92, 79] are not only for
mathematical tourists.

We live in a time, in which more and more content is available online.
Knowledge diffuses from papers and books to online websites and databases
which also ease the digging for knowledge in the fascinating field of proba-
bility theory.

Oliver Knill, March 20, 2008
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Chapter 1

Introduction

1.1 What is probability theory?

Probability theory is a fundamental pillar of modern mathematics with
relations to other mathematical areas like algebra, topology, analysis, ge-
ometry or dynamical systems. As with any fundamental mathematical con-
struction, the theory starts by adding more structure to a set Ω. In a similar
way as introducing algebraic operations, a topology, or a time evolution on
a set, probability theory adds a measure theoretical structure to Ω which
generalizes ”counting” on finite sets: in order to measure the probability
of a subset A ⊂ Ω, one singles out a class of subsets A, on which one can
hope to do so. This leads to the notion of a σ-algebra A. It is a set of sub-
sets of Ω in which on can perform finitely or countably many operations
like taking unions, complements or intersections. The elements in A are
called events. If a point ω in the ”laboratory” Ω denotes an ”experiment”,
an ”event” A ∈ A is a subset of Ω, for which one can assign a proba-
bility P[A] ∈ [0, 1]. For example, if P[A] = 1/3, the event happens with
probability 1/3. If P[A] = 1, the event takes place almost certainly. The
probability measure P has to satisfy obvious properties like that the union
A ∪B of two disjoint events A,B satisfies P[A ∪B] = P[A] + P[B] or that
the complement Ac of an event A has the probability P[Ac] = 1 − P[A].
With a probability space (Ω,A,P) alone, there is already some interesting
mathematics: one has for example the combinatorial problem to find the
probabilities of events like the event to get a ”royal flush” in poker. If Ω
is a subset of an Euclidean space like the plane, P[A] =

∫

A f(x, y) dxdy
for a suitable nonnegative function f , we are led to integration problems
in calculus. Actually, in many applications, the probability space is part of
Euclidean space and the σ-algebra is the smallest which contains all open
sets. It is called the Borel σ-algebra. An important example is the Borel
σ-algebra on the real line.

Given a probability space (Ω,A,P), one can define random variables X . A
random variable is a function X from Ω to the real line R which is mea-
surable in the sense that the inverse of a measurable Borel set B in R is

7



8 Chapter 1. Introduction

in A. The interpretation is that if ω is an experiment, then X(ω) mea-
sures an observable quantity of the experiment. The technical condition of
measurability resembles the notion of a continuity for a function f from a
topological space (Ω,O) to the topological space (R,U). A function is con-
tinuous if f−1(U) ∈ O for all open sets U ∈ U . In probability theory, where
functions are often denoted with capital letters, like X,Y, . . . , a random
variable X is measurable if X−1(B) ∈ A for all Borel sets B ∈ B. Any
continuous function is measurable for the Borel σ-algebra. As in calculus,
where one does not have to worry about continuity most of the time, also in
probability theory, one often does not have to sweat about measurability is-
sues. Indeed, one could suspect that notions like σ-algebras or measurability
were introduced by mathematicians to scare normal folks away from their
realms. This is not the case. Serious issues are avoided with those construc-
tions. Mathematics is eternal: a once established result will be true also in
thousands of years. A theory in which one could prove a theorem as well as
its negation would be worthless: it would formally allow to prove any other
result, whether true or false. So, these notions are not only introduced to
keep the theory ”clean”, they are essential for the ”survival” of the theory.
We give some examples of ”paradoxes” to illustrate the need for building
a careful theory. Back to the fundamental notion of random variables: be-
cause they are just functions, one can add and multiply them by defining
(X + Y )(ω) = X(ω) + Y (ω) or (XY )(ω) = X(ω)Y (ω). Random variables
form so an algebra L. The expectation of a random variable X is denoted
by E[X ] if it exists. It is a real number which indicates the ”mean” or ”av-
erage” of the observationX . It is the value, one would expect to measure in
the experiment. If X = 1B is the random variable which has the value 1 if
ω is in the event B and 0 if ω is not in the event B, then the expectation of
X is just the probability of B. The constant random variable X(ω) = a has
the expectation E[X ] = a. These two basic examples as well as the linearity
requirement E[aX+ bY ] = aE[X ]+ bE[Y ] determine the expectation for all
random variables in the algebra L: first one defines expectation for finite
sums

∑n
i=1 ai1Bi called elementary random variables, which approximate

general measurable functions. Extending the expectation to a subset L1 of
the entire algebra is part of integration theory. While in calculus, one can
live with the Riemann integral on the real line, which defines the integral

by Riemann sums
∫ b

a f(x) dx ∼ 1
n

∑

i/n∈[a,b] f(i/n), the integral defined in
measure theory is the Lebesgue integral. The later is more fundamental
and probability theory is a major motivator for using it. It allows to make
statements like that the probability of the set of real numbers with periodic
decimal expansion has probability 0. In general, the probability of A is the
expectation of the random variable X(x) = f(x) = 1A(x). In calculus, the

integral
∫ 1

0 f(x) dx would not be defined because a Riemann integral can
give 1 or 0 depending on how the Riemann approximation is done. Probabil-

ity theory allows to introduce the Lebesgue integral by defining
∫ b

a
f(x) dx

as the limit of 1
n

∑n
i=1 f(xi) for n → ∞, where xi are random uniformly

distributed points in the interval [a, b]. This Monte Carlo definition of the
Lebesgue integral is based on the law of large numbers and is as intuitive



1.1. What is probability theory? 9

to state as the Riemann integral which is the limit of 1
n

∑

xj=j/n∈[a,b] f(xj)
for n→ ∞.

With the fundamental notion of expectation one can define the variance,
Var[X ] = E[X2]−E[X ]2 and the standard deviation σ[X ] =

√

Var[X ] of a
random variable X for which X2 ∈ L1. One can also look at the covariance
Cov[XY ] = E[XY ] − E[X ]E[Y ] of two random variables X,Y for which
X2, Y 2 ∈ L1. The correlation Corr[X,Y ] = Cov[XY ]/(σ[X ]σ[Y ]) of two
random variables with positive variance is a number which tells how much
the random variable X is related to the random variable Y . If E[XY ] is
interpreted as an inner product, then the standard deviation is the length
of X−E[X ] and the correlation has the geometric interpretation as cos(α),
where α is the angle between the centered random variables X −E[X ] and
Y − E[Y ]. For example, if Cov[X,Y ] = 1, then Y = λX for some λ > 0, if
Cov[X,Y ] = −1, they are anti-parallel. If the correlation is zero, the geo-
metric interpretation is that the two random variables are perpendicular.
Decorrelated random variables still can have relations to each other but if
for any measurable real functions f and g, the random variables f(X) and
g(Y ) are uncorrelated, then the random variables X,Y are independent.

A random variable X can be described well by its distribution function
FX . This is a real-valued function defined as FX(s) = P[X ≤ s] on R,
where {X ≤ s } is the event of all experiments ω satisfying X(ω) ≤ s. The
distribution function does not encode the internal structure of the random
variable X ; it does not reveal the structure of the probability space for ex-
ample. But the function FX allows the construction of a probability space
with exactly this distribution function. There are two important types of
distributions, continuous distributions with a probability density function
fX = F ′

X and discrete distributions for which F is piecewise constant. An
example of a continuous distribution is the standard normal distribution,
where fX(x) = e−x

2/2/
√
2π. One can characterize it as the distribution

with maximal entropy I(f) = −
∫

log(f(x))f(x) dx among all distributions
which have zero mean and variance 1. An example of a discrete distribu-

tion is the Poisson distribution P[X = k] = e−λ λ
k

k! on N = {0, 1, 2, . . . }.
One can describe random variables by their moment generating functions
MX(t) = E[eXt] or by their characteristic function φX(t) = E[eiXt]. The
later is the Fourier transform of the law µX = F ′

X which is a measure on
the real line R.

The law µX of the random variable is a probability measure on the real
line satisfying µX((a, b]) = FX(b)−FX(a). By the Lebesgue decomposition
theorem, one can decompose any measure µ into a discrete part µpp, an
absolutely continuous part µac and a singular continuous part µsc. Random
variables X for which µX is a discrete measure are called discrete random
variables, random variables with a continuous law are called continuous
random variables. Traditionally, these two type of random variables are
the most important ones. But singular continuous random variables appear
too: in spectral theory, dynamical systems or fractal geometry. Of course,
the law of a random variable X does not need to be pure. It can mix the
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three types. A random variable can be mixed discrete and continuous for
example.

Inequalities play an important role in probability theory. The Chebychev

inequality P[|X − E[X ]| ≥ c] ≤ Var[X]
c2 is used very often. It is a spe-

cial case of the Chebychev-Markov inequality h(c) · P[X ≥ c] ≤ E[h(X)]
for monotone nonnegative functions h. Other inequalities are the Jensen
inequality E[h(X)] ≥ h(E[X ]) for convex functions h, the Minkowski in-
equality ||X + Y ||p ≤ ||X ||p + ||Y ||p or the Hölder inequality ||XY ||1 ≤
||X ||p||Y ||q, 1/p + 1/q = 1 for random variables, X,Y , for which ||X ||p =
E[|X |p], ||Y ||q = E[|Y |q] are finite. Any inequality which appears in analy-
sis can be useful in the toolbox of probability theory.

Independence is a central notion in probability theory. Two events A,B
are called independent, if P[A ∩ B] = P[A] · P[B]. An arbitrary set of
events Ai is called independent, if for any finite subset of them, the prob-
ability of their intersection is the product of their probabilities. Two σ-
algebras A,B are called independent, if for any pair A ∈ A, B ∈ B, the
events A,B are independent. Two random variables X,Y are independent,
if they generate independent σ-algebras. It is enough to check that the
events A = {X ∈ (a, b)} and B = {Y ∈ (c, d)} are independent for
all intervals (a, b) and (c, d). One should think of independent random
variables as two aspects of the laboratory Ω which do not influence each
other. Each event A = {a < X(ω) < b } is independent of the event
B = {c < Y (ω) < d }. While the distribution function FX+Y of the sum of
two independent random variables is a convolution

∫

R
FX(t−s) dFY (s), the

moment generating functions and characteristic functions satisfy the for-
mulas MX+Y (t) =MX(t)MY (t) and φX+Y (t) = φX(t)φY (t). These identi-
ties makeMX , φX valuable tools to compute the distribution of an arbitrary
finite sum of independent random variables.

Independence can also be explained using conditional probability with re-
spect to an event B of positive probability: the conditional probability
P[A|B] = P[A ∩ B]/P[B] of A is the probability that A happens when we
know that B takes place. If B is independent of A, then P[A|B] = P[A] but
in general, the conditional probability is larger. The notion of conditional
probability leads to the important notion of conditional expectation E[X |B]
of a random variable X with respect to some sub-σ-algebra B of the σ al-
gebra A; it is a new random variable which is B-measurable. For B = A, it
is the random variable itself, for the trivial algebra B = {∅,Ω }, we obtain
the usual expectation E[X ] = E[X |{∅,Ω }]. If B is generated by a finite
partition B1, . . . , Bn of Ω of pairwise disjoint sets covering Ω, then E[X |B]
is piecewise constant on the sets Bi and the value on Bi is the average
value of X on Bi. If B is the σ-algebra of an independent random variable
Y , then E[X |Y ] = E[X |B] = E[X ]. In general, the conditional expectation
with respect to B is a new random variable obtained by averaging on the
elements of B. One has E[X |Y ] = h(Y ) for some function h, extreme cases
being E[X |1] = E[X ],E[X |X ] = X . An illustrative example is the situation
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where X(x, y) is a continuous function on the unit square with P = dxdy
as a probability measure and where Y (x, y) = x. In that case, E[X |Y ] is
a function of x alone, given by E[X |Y ](x) =

∫ 1

0 f(x, y) dy. This is called a
conditional integral.

A set {Xt}t∈T of random variables defines a stochastic process. The vari-
able t ∈ T is a parameter called ”time”. Stochastic processes are to prob-
ability theory what differential equations are to calculus. An example is a
family Xn of random variables which evolve with discrete time n ∈ N. De-
terministic dynamical system theory branches into discrete time systems,
the iteration of maps and continuous time systems, the theory of ordinary
and partial differential equations. Similarly, in probability theory, one dis-
tinguishes between discrete time stochastic processes and continuous time
stochastic processes. A discrete time stochastic process is a sequence of ran-
dom variables Xn with certain properties. An important example is when
Xn are independent, identically distributed random variables. A continuous
time stochastic process is given by a family of random variables Xt, where
t is real time. An example is a solution of a stochastic differential equation.
With more general time like Zd or Rd random variables are called random
fields which play a role in statistical physics. Examples of such processes
are percolation processes.

While one can realize every discrete time stochastic processXn by a measure-
preserving transformation T : Ω → Ω and Xn(ω) = X(T n(ω)), probabil-
ity theory often focuses a special subclass of systems called martingales,
where one has a filtration An ⊂ An+1 of σ-algebras such that Xn is An-
measurable and E[Xn|An−1] = Xn−1, where E[Xn|An−1] is the conditional
expectation with respect to the sub-algebra An−1. Martingales are a pow-
erful generalization of the random walk, the process of summing up IID
random variables with zero mean. Similar as ergodic theory, martingale
theory is a natural extension of probability theory and has many applica-
tions.

The language of probability fits well into the classical theory of dynam-
ical systems. For example, the ergodic theorem of Birkhoff for measure-
preserving transformations has as a special case the law of large numbers
which describes the average of partial sums of random variables 1

n

∑m
k=1Xk.

There are different versions of the law of large numbers. ”Weak laws”
make statements about convergence in probability, ”strong laws” make
statements about almost everywhere convergence. There are versions of
the law of large numbers for which the random variables do not need to
have a common distribution and which go beyond Birkhoff’s theorem. An
other important theorem is the central limit theorem which shows that
Sn = X1 + X2 + · · · + Xn normalized to have zero mean and variance 1
converges in law to the normal distribution or the law of the iterated loga-
rithm which says that for centered independent and identically distributed
Xk, the scaled sum Sn/Λn has accumulation points in the interval [−σ, σ]
if Λn =

√
2n log logn and σ is the standard deviation of Xk. While stating
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the weak and strong law of large numbers and the central limit theorem,
different convergence notions for random variables appear: almost sure con-
vergence is the strongest, it implies convergence in probability and the later
implies convergence convergence in law. There is also L1-convergencewhich
is stronger than convergence in probability.

As in the deterministic case, where the theory of differential equations is
more technical than the theory of maps, building up the formalism for
continuous time stochastic processes Xt is more elaborate. Similarly as
for differential equations, one has first to prove the existence of the ob-
jects. The most important continuous time stochastic process definitely is
Brownian motion Bt. Standard Brownian motion is a stochastic process
which satisfies B0 = 0, E[Bt] = 0, Cov[Bs, Bt] = s for s ≤ t and for
any sequence of times, 0 = t0 < t1 < · · · < ti < ti+1, the increments
Bti+1 − Bti are all independent random vectors with normal distribution.
Brownian motion Bt is a solution of the stochastic differential equation
d
dtBt = ζ(t), where ζ(t) is called white noise. Because white noise is only
defined as a generalized function and is not a stochastic process by itself,
this stochastic differential equation has to be understood in its integrated
form Bt =

∫ t

0 dBs =
∫ t

0 ζ(s) ds.

More generally, a solution to a stochastic differential equation d
dtXt =

f(Xt)ζ(t) + g(Xt) is defined as the solution to the integral equation Xt =

X0 +
∫ t

0 f(Xs) dBt +
∫ t

0 g(Xs) ds. Stochastic differential equations can

be defined in different ways. The expression
∫ t

0
f(Xs) dBt can either be

defined as an Ito integral, which leads to martingale solutions, or the
Stratonovich integral, which has similar integration rules than classical
differentiation equations. Examples of stochastic differential equations are
d
dtXt = Xtζ(t) which has the solution Xt = eBt−t/2. Or d

dtXt = B4
t ζ(t)

which has as the solution the process Xt = B5
t −10B3

t +15Bt. The key tool
to solve stochastic differential equations is Ito’s formula f(Bt) − f(B0) =
∫ t

0
f ′(Bs)dBs + 1

2

∫ t

0
f ′′(Bs) ds, which is the stochastic analog of the fun-

damental theorem of calculus. Solutions to stochastic differential equations
are examples of Markov processes which show diffusion. Especially, the so-
lutions can be used to solve classical partial differential equations like the
Dirichlet problem ∆u = 0 in a bounded domain D with u = f on the
boundary δD. One can get the solution by computing the expectation of
f at the end points of Brownian motion starting at x and ending at the
boundary u = Ex[f(BT )]. On a discrete graph, if Brownian motion is re-
placed by random walk, the same formula holds too. Stochastic calculus is
also useful to interpret quantum mechanics as a diffusion processes [74, 72]
or as a tool to compute solutions to quantum mechanical problems using
Feynman-Kac formulas.

Some features of stochastic process can be described using the language of
Markov operators P , which are positive and expectation-preserving trans-
formations on L1. Examples of such operators are Perron-Frobenius op-
erators X → X(T ) for a measure preserving transformation T defining a
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discrete time evolution or stochastic matrices describing a random walk
on a finite graph. Markov operators can be defined by transition proba-
bility functions which are measure-valued random variables. The interpre-
tation is that from a given point ω, there are different possibilities to go
to. A transition probability measure P(ω, ·) gives the distribution of the
target. The relation with Markov operators is assured by the Chapman-
Kolmogorov equation Pn+m = Pn ◦Pm. Markov processes can be obtained
from random transformations, random walks or by stochastic differential
equations. In the case of a finite or countable target space S, one obtains
Markov chains which can be described by probability matrices P , which
are the simplest Markov operators. For Markov operators, there is an ar-
row of time: the relative entropy with respect to a background measure
is non-increasing. Markov processes often are attracted by fixed points of
the Markov operator. Such fixed points are called stationary states. They
describe equilibria and often they are measures with maximal entropy. An
example is the Markov operator P , which assigns to a probability density
fY the probability density of fY+X where Y +X is the random variable
Y + X normalized so that it has mean 0 and variance 1. For the initial
function f = 1, the function Pn(fX) is the distribution of S∗

n the nor-
malized sum of n IID random variables Xi. This Markov operator has a
unique equilibrium point, the standard normal distribution. It has maxi-
mal entropy among all distributions on the real line with variance 1 and
mean 0. The central limit theorem tells that the Markov operator P has
the normal distribution as a unique attracting fixed point if one takes the
weaker topology of convergence in distribution on L1. This works in other
situations too. For circle-valued random variables for example, the uniform
distribution maximizes entropy. It is not surprising therefore, that there is
a central limit theorem for circle-valued random variables with the uniform
distribution as the limiting distribution.

In the same way as mathematics reaches out into other scientific areas,
probability theory has connections with many other branches of mathe-
matics. The last chapter of these notes give some examples. The section
on percolation shows how probability theory can help to understand criti-
cal phenomena. In solid state physics, one considers operator-valued ran-
dom variables. The spectrum of random operators are random objects too.
One is interested what happens with probability one. Localization is the
phenomenon in solid state physics that sufficiently random operators of-
ten have pure point spectrum. The section on estimation theory gives a
glimpse of what mathematical statistics is about. In statistics one often
does not know the probability space itself so that one has to make a statis-
tical model and look at a parameterization of probability spaces. The goal
is to give maximum likelihood estimates for the parameters from data and
to understand how small the quadratic estimation error can be made. A
section on Vlasov dynamics shows how probability theory appears in prob-
lems of geometric evolution. Vlasov dynamics is a generalization of the
n-body problem to the evolution of of probability measures. One can look
at the evolution of smooth measures or measures located on surfaces. This
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deterministic stochastic system produces an evolution of densities which
can form singularities without doing harm to the formalism. It also defines
the evolution of surfaces. The section on moment problems is part of multi-
variate statistics. As for random variables, random vectors can be described
by their moments. Since moments define the law of the random variable,
the question arises how one can see from the moments, whether we have a
continuous random variable. The section of random maps is an other part
of dynamical systems theory. Randomized versions of diffeomorphisms can
be considered idealization of their undisturbed versions. They often can
be understood better than their deterministic versions. For example, many
random diffeomorphisms have only finitely many ergodic components. In
the section in circular random variables, we see that the Mises distribu-
tion has extremal entropy among all circle-valued random variables with
given circular mean and variance. There is also a central limit theorem
on the circle: the sum of IID circular random variables converges in law
to the uniform distribution. We then look at a problem in the geometry
of numbers: how many lattice points are there in a neighborhood of the
graph of one-dimensional Brownian motion? The analysis of this problem
needs a law of large numbers for independent random variables Xk with
uniform distribution on [0, 1]: for 0 ≤ δ < 1, and An = [0, 1/nδ] one has

limn→∞
1
n

∑n
k=1

1An (Xk)
nδ = 1. Probability theory also matters in complex-

ity theory as a section on arithmetic random variables shows. It turns out
that random variables like Xn(k) = k, Yn(k) = k2 + 3 mod n defined on
finite probability spaces become independent in the limit n → ∞. Such
considerations matter in complexity theory: arithmetic functions defined
on large but finite sets behave very much like random functions. This is
reflected by the fact that the inverse of arithmetic functions is in general
difficult to compute and belong to the complexity class of NP. Indeed, if
one could invert arithmetic functions easily, one could solve problems like
factoring integers fast. A short section on Diophantine equations indicates
how the distribution of random variables can shed light on the solution
of Diophantine equations. Finally, we look at a topic in harmonic analy-
sis which was initiated by Norbert Wiener. It deals with the relation of
the characteristic function φX and the continuity properties of the random
variable X .

1.2 Some paradoxes in probability theory

Colloquial language is not always precise enough to tackle problems in
probability theory. Paradoxes appear, when definitions allow different in-
terpretations. Ambiguous language can lead to wrong conclusions or con-
tradicting solutions. To illustrate this, we mention a few problems. For
many more, see [110]. The following four examples should serve as a mo-
tivation to introduce probability theory on a rigorous mathematical footing.

1) Bertrand’s paradox (Bertrand 1889)
We throw random lines onto the unit disc. What is the probability that
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the line intersects the disc with a length ≥
√
3, the length of the inscribed

equilateral triangle?

First answer: take an arbitrary point P on the boundary of the disc. The
set of all lines through that point are parameterized by an angle φ. In order
that the chord is longer than

√
3, the line has to lie within a sector of 60◦

within a range of 180◦. The probability is 1/3.

Second answer: take all lines perpendicular to a fixed diameter. The chord
is longer than

√
3 if the point of intersection lies on the middle half of the

diameter. The probability is 1/2.

Third answer: if the midpoints of the chords lie in a disc of radius 1/2, the
chord is longer than

√
3. Because the disc has a radius which is half the

radius of the unit disc, the probability is 1/4.

Figure. Random an-
gle.

Figure. Random
translation.

Figure. Random area.

Like most paradoxes in mathematics, a part of the question in Bertrand’s
problem is not well defined. Here it is the term ”random line”. The solu-
tion of the paradox lies in the fact that the three answers depend on the
chosen probability distribution. There are several ”natural” distributions.
The actual answer depends on how the experiment is performed.

2) Petersburg paradox (D.Bernoulli, 1738)
In the Petersburg casino, you pay an entrance fee c and you get the prize
2T , where T is the number of times, the casino flips a coin until ”head”
appears. For example, if the sequence of coin experiments would give ”tail,
tail, tail, head”, you would win 23 − c = 8− c, the win minus the entrance
fee. Fair would be an entrance fee which is equal to the expectation of the
win, which is

∞
∑

k=1

2kP[T = k] =

∞
∑

k=1

1 = ∞ .

The paradox is that nobody would agree to pay even an entrance fee c = 10.
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The problem with this casino is that it is not quite clear, what is ”fair”.
For example, the situation T = 20 is so improbable that it never occurs
in the life-time of a person. Therefore, for any practical reason, one has
not to worry about large values of T . This, as well as the finiteness of
money resources is the reason, why casinos do not have to worry about the
following bullet proof martingale strategy in roulette: bet c dollars on red.
If you win, stop, if you lose, bet 2c dollars on red. If you win, stop. If you
lose, bet 4c dollars on red. Keep doubling the bet. Eventually after n steps,
red will occur and you will win 2nc − (c + 2c + · · · + 2n−1c) = c dollars.
This example motivates the concept of martingales. Theorem (3.2.7) or
proposition (3.2.9) will shed some light on this. Back to the Petersburg
paradox. How does one resolve it? What would be a reasonable entrance
fee in ”real life”? Bernoulli proposed to replace the expectation E[G] of the
profit G = 2T with the expectation (E[

√
G])2, where u(x) =

√
x is called a

utility function. This would lead to a fair entrance

(E[
√
G])2 = (

∞
∑

k=1

2k/22−k)2 =
1

(
√
2− 1)2

∼ 5.828... .

It is not so clear if that is a way out of the paradox because for any proposed
utility function u(k), one can modify the casino rule so that the paradox

reappears: pay (2k)2 if the utility function u(k) =
√
k or pay e2

k

dollars,
if the utility function is u(k) = log(k). Such reasoning plays a role in
economics and social sciences.

Figure. The picture to the right
shows the average profit devel-
opment during a typical tourna-
ment of 4000 Petersburg games.
After these 4000 games, the
player would have lost about 10
thousand dollars, when paying a
10 dollar entrance fee each game.
The player would have to play a
very, very long time to catch up.
Mathematically, the player will
do so and have a profit in the
long run, but it is unlikely that
it will happen in his or her life
time.

1000 2000 3000 4000

4

6

8

3) The three door problem (1991) Suppose you’re on a game show and
you are given a choice of three doors. Behind one door is a car and behind
the others are goats. You pick a door-say No. 1 - and the host, who knows
what’s behind the doors, opens another door-say, No. 3-which has a goat.
(In all games, he opens a door to reveal a goat). He then says to you, ”Do



1.2. Some paradoxes in probability theory 17

you want to pick door No. 2?” (In all games he always offers an option to
switch). Is it to your advantage to switch your choice?

The problem is also called ”Monty Hall problem” and was discussed by
Marilyn vos Savant in a ”Parade” column in 1991 and provoked a big
controversy. (See [101] for pointers and similar examples and [89] for much
more background.) The problem is that intuitive argumentation can easily
lead to the conclusion that it does not matter whether to change the door
or not. Switching the door doubles the chances to win:

No switching: you choose a door and win with probability 1/3. The opening
of the host does not affect any more your choice.
Switching: when choosing the door with the car, you loose since you switch.
If you choose a door with a goat. The host opens the other door with the
goat and you win. There are two such cases, where you win. The probability
to win is 2/3.

4) The Banach-Tarski paradox (1924)
It is possible to cut the standard unit ball Ω = {x ∈ R3 | |x| ≤ 1 } into 5
disjoint pieces Ω = Y1∪Y2∪Y3∪Y4∪Y5 and rotate and translate the pieces
with transformations Ti so that T1(Y1)∪T2(Y2) = Ω and T3(Y3)∪T4(Y4)∪
T5(Y5) = Ω′ is a second unit ball Ω′ = {x ∈ R3 | |x− (3, 0, 0)| ≤ 1} and all
the transformed sets again don’t intersect.
While this example of Banach-Tarski is spectacular, the existence of bounded
subsets A of the circle for which one can not assign a translational invari-
ant probability P[A] can already be achieved in one dimension. The Italian
mathematician Giuseppe Vitali gave in 1905 the following example: define
an equivalence relation on the circle T = [0, 2π) by saying that two angles
are equivalent x ∼ y if (x−y)/π is a rational angle. Let A be a subset in the
circle which contains exactly one number from each equivalence class. The
axiom of choice assures the existence of A. If x1, x2, . . . is a enumeration
of the set of rational angles in the circle, then the sets Ai = A + xi are
pairwise disjoint and satisfy

⋃∞
i=1 Ai = T. If we could assign a translational

invariant probability P[Ai] to A, then the basic rules of probability would
give

1 = P[T] = P[

∞
⋃

i=1

Ai] =

∞
∑

i=1

P[Ai] =

∞
∑

i=1

p .

But there is no real number p = P[A] = P[Ai] which makes this possible.
Both the Banach-Tarski as well as Vitalis result shows that one can not
hope to define a probability space on the algebra A of all subsets of the unit
ball or the unit circle such that the probability measure is translational
and rotational invariant. The natural concepts of ”length” or ”volume”,
which are rotational and translational invariant only makes sense for a
smaller algebra. This will lead to the notion of σ-algebra. In the context
of topological spaces like Euclidean spaces, it leads to Borel σ-algebras,
algebras of sets generated by the compact sets of the topological space.
This language will be developed in the next chapter.
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1.3 Some applications of probability theory

Probability theory is a central topic in mathematics. There are close re-
lations and intersections with other fields like computer science, ergodic
theory and dynamical systems, cryptology, game theory, analysis, partial
differential equation, mathematical physics, economical sciences, statistical
mechanics and even number theory. As a motivation, we give some prob-
lems and topics which can be treated with probabilistic methods.

1) Random walks: (statistical mechanics, gambling, stock markets, quan-
tum field theory).

Assume you walk through a lattice. At each vertex, you choose a direction
at random. What is the probability that you return back to your start-
ing point? Polya’s theorem (3.8.1) says that in two dimensions, a random
walker almost certainly returns to the origin arbitrarily often, while in three
dimensions, the walker with probability 1 only returns a finite number of
times and then escapes for ever.

Figure. A random
walk in one dimen-
sions displayed as a
graph (t, Bt).

Figure. A piece of a
random walk in two
dimensions.

Figure. A piece of a
random walk in three
dimensions.

2) Percolation problems (model of a porous medium, statistical mechanics,
critical phenomena).

Each bond of a rectangular lattice in the plane is connected with probability
p and disconnected with probability 1 − p. Two lattice points x, y in the
lattice are in the same cluster, if there is a path from x to y. One says that
”percolation occurs” if there is a positive probability that an infinite cluster
appears. One problem is to find the critical probability pc, the infimum of all
p, for which percolation occurs. The problem can be extended to situations,
where the switch probabilities are not independent to each other. Some
random variables like the size of the largest cluster are of interest near the
critical probability pc.
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Figure. Bond percola-
tion with p=0.2.

Figure. Bond percola-
tion with p=0.4.

Figure. Bond percola-
tion with p=0.6.

A variant of bond percolation is site percolation where the nodes of the
lattice are switched on with probability p.

Figure. Site percola-
tion with p=0.2.

Figure. Site percola-
tion with p=0.4.

Figure. Site percola-
tion with p=0.6.

Generalized percolation problems are obtained, when the independence
of the individual nodes is relaxed. A class of such dependent percola-
tion problems can be obtained by choosing two irrational numbers α, β
like α =

√
2 − 1 and β =

√
3 − 1 and switching the node (n,m) on if

(nα+mβ) mod 1 ∈ [0, p). The probability of switching a node on is again
p, but the random variables

Xn,m = 1(nα+mβ) mod 1∈[0,p)

are no more independent.
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Figure. Dependent
site percolation with
p=0.2.

Figure. Dependent
site percolation with
p=0.4.

Figure. Dependent
site percolation with
p=0.6.

Even more general percolation problems are obtained, if also the distribu-
tion of the random variables Xn,m can depend on the position (n,m).

3) Random Schrödinger operators. (quantum mechanics, functional analy-
sis, disordered systems, solid state physics)

Consider the linear map Lu(n) =
∑

|m−n|=1 u(n) + V (n)u(n) on the space

of sequences u = (. . . , u−2, u−1, u0, u1, u2, . . . ). We assume that V (n) takes
random values in {0, 1}. The function V is called the potential. The problem
is to determine the spectrum or spectral type of the infinite matrix L on
the Hilbert space l2 of all sequences u with finite ||u||22 =

∑∞
n=−∞ u2n.

The operator L is the Hamiltonian of an electron in a one-dimensional
disordered crystal. The spectral properties of L have a relation with the
conductivity properties of the crystal. Of special interest is the situation,
where the values V (n) are all independent random variables. It turns out
that if V (n) are IID random variables with a continuous distribution, there
are many eigenvalues for the infinite dimensional matrix L - at least with
probability 1. This phenomenon is called localization.
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Figure. A wave
ψ(t) = eiLtψ(0)
evolving in a random
potential at t = 0.
Shown are both the
potential Vn and the
wave ψ(0).

Figure. A wave
ψ(t) = eiLtψ(0)
evolving in a random
potential at t = 1.
Shown are both the
potential Vn and the
wave ψ(1).

Figure. A wave
ψ(t) = eiLtψ(0)
evolving in a random
potential at t = 2.
Shown are both the
potential Vn and the
wave ψ(2).

More general operators are obtained by allowing V (n) to be random vari-
ables with the same distribution but where one does not persist on indepen-
dence any more. A well studied example is the almost Mathieu operator,
where V (n) = λ cos(θ + nα) and for which α/(2π) is irrational.

4) Classical dynamical systems (celestial mechanics, fluid dynamics, me-
chanics, population models)

The study of deterministic dynamical systems like the logistic map x 7→
4x(1 − x) on the interval [0, 1] or the three body problem in celestial me-
chanics has shown that such systems or subsets of it can behave like random
systems. Many effects can be described by ergodic theory, which can be
seen as a brother of probability theory. Many results in probability the-
ory generalize to the more general setup of ergodic theory. An example is
Birkhoff’s ergodic theorem which generalizes the law of large numbers.
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Figure. Iterating the
logistic map

T (x) = 4x(1− x)

on [0, 1] produces
independent random
variables. The in-
variant measure P is
continuous.

-4 -2 2 4
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-2

2
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Figure. The simple
mechanical system of
a double pendulum
exhibits complicated
dynamics. The dif-
ferential equation
defines a measure
preserving flow Tt on
a probability space.

Figure. A short time
evolution of the New-
tonian three body
problem. There are
energies and subsets
of the energy surface
which are invari-
ant and on which
there is an invariant
probability measure.

Given a dynamical system given by a map T or a flow Tt on a subset Ω of
some Euclidean space, one obtains for every invariant probability measure
P a probability space (Ω,A,P). An observed quantity like a coordinate of
an individual particle is a random variable X and defines a stochastic pro-
cess Xn(ω) = X(T nω). For many dynamical systems including also some 3
body problems, there are invariant measures and observables X for which
Xn are IID random variables. Probability theory is therefore intrinsically
relevant also in classical dynamical systems.

5) Cryptology. (computer science, coding theory, data encryption)

Coding theory deals with the mathematics of encrypting codes or deals
with the design of error correcting codes. Both aspects of coding theory
have important applications. A good code can repair loss of information
due to bad channels and hide the information in an encrypted way. While
many aspects of coding theory are based in discrete mathematics, number
theory, algebra and algebraic geometry, there are probabilistic and combi-
natorial aspects to the problem. We illustrate this with the example of a
public key encryption algorithm whose security is based on the fact that
it is hard to factor a large integer N = pq into its prime factors p, q but
easy to verify that p, q are factors, if one knows them. The number N can
be public but only the person, who knows the factors p, q can read the
message. Assume, we want to crack the code and find the factors p and q.

The simplest method is to try to find the factors by trial and error but this is
impractical already ifN has 50 digits. We would have to search through 1025

numbers to find the factor p. This corresponds to probe 100 million times
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every second over a time span of 15 billion years. There are better methods
known and we want to illustrate one of them now: assume we want to find
the factors of N = 11111111111111111111111111111111111111111111111.
The method goes as follows: start with an integer a and iterate the quadratic
map T (x) = x2 + c mod N on {0, 1., , , .N − 1 }. If we assume the numbers
x0 = a, x1 = T (a), x2 = T (T (a)) . . . to be random, how many such numbers
do we have to generate, until two of them are the same modulo one of the
prime factors p? The answer is surprisingly small and based on the birthday
paradox: the probability that in a group of 23 students, two of them have the
same birthday is larger than 1/2: the probability of the event that we have
no birthday match is 1(364/365)(363/365) · · ·(343/365) = 0.492703 . . . , so
that the probability of a birthday match is 1− 0.492703 = 0.507292. This
is larger than 1/2. If we apply this thinking to the sequence of numbers
xi generated by the pseudo random number generator T , then we expect
to have a chance of 1/2 for finding a match modulo p in

√
p iterations.

Because p ≤ √
n, we have to try N1/4 numbers, to get a factor: if xn and

xm are the same modulo p, then gcd(xn − xm, N) produces the factor p of
N . In the above example of the 46 digit number N , there is a prime factor
p = 35121409. The Pollard algorithm finds this factor with probability 1/2
in

√
p = 5926 steps. This is an estimate only which gives the order of mag-

nitude. With the above N , if we start with a = 17 and take a = 3, then we
have a match x27720 = x13860. It can be found very fast.

This probabilistic argument would give a rigorous probabilistic estimate
if we would pick truly random numbers. The algorithm of course gener-
ates such numbers in a deterministic way and they are not truly random.
The generator is called a pseudo random number generator. It produces
numbers which are random in the sense that many statistical tests can
not distinguish them from true random numbers. Actually, many random
number generators built into computer operating systems and program-
ming languages are pseudo random number generators.

Probabilistic thinking is often involved in designing, investigating and at-
tacking data encryption codes or random number generators.

6) Numerical methods. (integration, Monte Carlo experiments, algorithms)

In applied situations, it is often very difficult to find integrals directly. This
happens for example in statistical mechanics or quantum electrodynamics,
where one wants to find integrals in spaces with a large number of dimen-
sions. One can nevertheless compute numerical values using Monte Carlo
Methods with a manageable amount of effort. Limit theorems assure that
these numerical values are reasonable. Let us illustrate this with a very
simple but famous example, the Buffon needle problem.

A stick of length 2 is thrown onto the plane filled with parallel lines, all
of which are distance d = 2 apart. If the center of the stick falls within
distance y of a line, then the interval of angles leading to an intersection
with a grid line has length 2 arccos(y) among a possible range of angles
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[0, π]. The probability of hitting a line is therefore
∫ 1

0 2 arccos(y)/π = 2/π.
This leads to a Monte Carlo method to compute π. Just throw randomly
n sticks onto the plane and count the number k of times, it hits a line. The
number 2n/k is an approximation of π. This is of course not an effective
way to compute π but it illustrates the principle.

Figure. The Buffon needle prob-
lem is a Monte Carlo method
to compute π. By counting the
number of hits in a sequence of
experiments, one can get ran-
dom approximations of π. The
law of large numbers assures that
the approximations will converge
to the expected limit. All Monte
Carlo computations are theoreti-
cally based on limit theorems.

a
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Limit theorems

2.1 Probability spaces, random variables, indepen-

dence

Let Ω be an arbitrary set.

Definition. A set A of subsets of Ω is called a σ-algebra if the following
three properties are satisfied:

(i) Ω ∈ A,
(ii) A ∈ A ⇒ Ac = Ω \A ∈ A,
(iii) An ∈ A ⇒ ⋃

n∈NAn ∈ A

A pair (Ω,A) for which A is a σ-algebra in Ω is called a measurable space.

Properties. If A is a σ-algebra, and An is a sequence in A, then the fol-
lowing properties follow immediately by checking the axioms:
1)

⋂

n∈NAn ∈ A.
2) lim supnAn :=

⋂∞
n=1

⋃∞
m=nAn ∈ A.

3) lim infnAn :=
⋃∞
n=1

⋂∞
m=nAn ∈ A.

4) A,B are algebras, then A∩ B is an algebra.
5) If {Aλ}i∈I is a family of σ- sub-algebras ofA. then

⋂

i∈I Ai is a σ-algebra.

Example. For an arbitrary set Ω, A = {∅,Ω} is a σ-algebra. It is called the
trivial σ-algebra.

Example. If Ω is an arbitrary set, then A = {A ⊂ Ω} is a σ-algebra. The
set of all subsets of Ω is the largest σ-algebra one can define on a set.

25
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Example. A finite set of subsets A1, A2, . . . , An of Ω which are pairwise
disjoint and whose union is Ω, it is called a partition of Ω. It generates the
σ-algebra: A = {A =

⋃

j∈J Aj } where J runs over all subsets of {1, .., n}.
This σ-algebra has 2n elements. Every finite σ-algebra is of this form. The
smallest nonempty elements {A1, . . . , An} of this algebra are called atoms.

Definition. For any set C of subsets of Ω, we can define σ(C), the smallest
σ-algebra A which contains C. The σ-algebra A is the intersection of all
σ-algebras which contain C. It is again a σ-algebra.

Example. For Ω = {1, 2, 3}, the set C = {{1, 2}, {2, 3 }} generates the
σ-algebra A which consists of all 8 subsets of Ω.

Definition. If (E,O) is a topological space, where O is the set of open sets
in E. then σ(O) is called the Borel σ-algebra of the topological space. If
A ⊂ B, then A is called a subalgebra of B. A set B in B is also called a
Borel set.

Remark. One sometimes defines the Borel σ-algebra as the σ-algebra gen-
erated by the set of compact sets C of a topological space. Compact sets
in a topological space are sets for which every open cover has a finite sub-
cover. In Euclidean spaces Rn, where compact sets coincide with the sets
which are both bounded and closed, the Borel σ-algebra generated by the
compact sets is the same as the one generated by open sets. The two def-
initions agree for a large class of topological spaces like ”locally compact
separable metric spaces”.

Remark. Often, the Borel σ-algebra is enlarged to the σ-algebra of all
Lebesgue measurable sets, which includes all sets B which are a subset
of a Borel set A of measure 0. The smallest σ-algebra B which contains
all these sets is called the completion of B. The completion of the Borel
σ-algebra is the σ-algebra of all Lebesgue measurable sets. It is in general
strictly larger than the Borel σ-algebra. But it can also have pathological
features like that the composition of a Lebesgue measurable function with
a continuous functions does not need to be Lebesgue measurable any more.
(See [114], Example 2.4).

Example. The σ-algebra generated by the open balls C = {A = Br(x) } of
a metric space (X, d) need not to agree with the family of Borel subsets,
which are generated by O, the set of open sets in (X, d).
Proof. Take the metric space (R, d) where d(x, y) = 1{x 6=y } is the discrete
metric. Because any subset of R is open, the Borel σ-algebra is the set of
all subsets of R. The open balls in R are either single points or the whole
space. The σ-algebra generated by the open balls is the set of countable
subset of R together with their complements.
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Example. If Ω = [0, 1]× [0, 1] is the unit square and C is the set of all sets
of the form [0, 1]× [a, b] with 0 < a < b < 1, then σ(C) is the σ-algebra of
all sets of the form [0, 1]×A, where A is in the Borel σ-algebra of [0, 1].

Definition. Given a measurable space (Ω,A). A function P : A → R is
called a probability measure and (Ω,A,P) is called a probability space if
the following three properties called Kolmogorov axioms are satisfied:

(i) P[A] ≥ 0 for all A ∈ A,
(ii) P[Ω] = 1,
(iii) An ∈ A disjoint ⇒ P[

⋃

nAn] =
∑

n P[An]

The last property is called σ-additivity.

Properties. Here are some basic properties of the probability measure
which immediately follow from the definition:
1) P[∅] = 0.
2) A ⊂ B ⇒ P[A] ≤ P[B].
3) P[

⋃

nAn] ≤
∑

n P[An].
4) P[Ac] = 1− P[A].
5) 0 ≤ P[A] ≤ 1.
6) A1 ⊂ A2,⊂ · · · with An ∈ A then P[

⋃∞
n=1An] = limn→∞ P[An].

Remark. There are different ways to build the axioms for a probability
space. One could for example replace (i) and (ii) with properties 4),5) in
the above list. Statement 6) is equivalent to σ-additivity if P is only assumed
to be additive.

Remark. The name ”Kolmogorov axioms” honors a monograph of Kol-
mogorov from 1933 [53] in which an axiomatization appeared. Other math-
ematicians have formulated similar axiomatizations at the same time, like
Hans Reichenbach in 1932. According to Doob, axioms (i)-(iii) were first
proposed by G. Bohlmann in 1908 [21].

Definition. A map X from a measure space (Ω,A) to an other measure
space (∆,B) is called measurable, if X−1(B) ∈ A for all B ∈ B. The set
X−1(B) consists of all points x ∈ Ω for which X(x) ∈ B. This pull back set
X−1(B) is defined even if X is non-invertible. For example, for X(x) = x2

on (R,B) one has X−1([1, 4]) = [1, 2] ∪ [−2,−1].

Definition. A function X : Ω → R is called a random variable, if it is a
measurable map from (Ω,A) to (R,B), where B is the Borel σ-algebra of
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R. Denote by L the set of all real random variables. The set L is an alge-
bra under addition and multiplication: one can add and multiply random
variables and gets new random variables. More generally, one can consider
random variables taking values in a second measurable space (E,B). If
E = Rd, then the random variable X is called a random vector. For a ran-
dom vector X = (X1, . . . , Xd), each component Xi is a random variable.

Example. Let Ω = R2 with Borel σ-algebra A and let

P[A] =
1

2π

∫ ∫

A

e−(x2−y2)/2 dxdy .

Any continuous function X of two variables is a random variable on Ω. For
example, X(x, y) = xy(x + y) is a random variable. But also X(x, y) =
1/(x + y) is a random variable, even so it is not continuous. The vector-
valued function X(x, y) = (x, y, x3) is an example of a random vector.

Definition. Every random variable X defines a σ-algebra

X−1(B) = {X−1(B) | B ∈ B } .

We denote this algebra by σ(X) and call it the σ-algebra generated by X .

Example. A constant map X(x) = c defines the trivial algebraA = {∅,Ω }.

Example. The map X(x, y) = x from the square Ω = [0, 1] × [0, 1] to the
real line R defines the algebra B = {A × [0, 1] }, where A is in the Borel
σ-algebra of the interval [0, 1].

Example. The map X from Z6 = {0, 1, 2, 3, 4, 5} to {0, 1} ⊂ R defined by
X(x) = x mod 2 has the value X(x) = 0 if x is even and X(x) = 1 if x is
odd. The σ-algebra generated by X is A = {∅, {1, 3, 5}, {0, 2, 4},Ω }.

Definition. Given a set B ∈ A with P[B] > 0, we define

P[A|B] =
P[A ∩B]

P[B]
,

the conditional probability of A with respect to B. It is the probability of
the event A, under the condition that the event B happens.

Example. We throw two fair dice. Let A be the event that the first dice is
6 and let B be the event that the sum of two dices is 11. Because P[B] =
2/36 = 1/18 and P[A ∩ B] = 1/36 (we need to throw a 6 and then a 5),
we have P[A|B] = (1/16)/(1/18) = 1/2. The interpretation is that since
we know that the event B happens, we have only two possibilities: (5, 6)
or (6, 5). On this space of possibilities, only the second is compatible with
the event B.
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Exercise. In [27], Martin Gardner writes: ”Ask someone to name two faces
of a die. Suppose he names 2 and 5. Let him throw a pair of dice as often
as he wishes. Each time you bet at even odds that either the 2 or the 5 or
both will show.” Is this a good bet?

Exercise. a) Verify that the Sicherman dices with faces (1, 3, 4, 5, 6, 8) and
(1, 2, 2, 3, 3, 4) have the property that the probability of getting the value
k is the same as with a pair of standard dice. For example, the proba-
bility to get 5 with the Sicherman dices is 4/36 because the three cases
(1, 4), (3, 2), (3, 2), (4, 1) lead to a sum 5. Also for the standard dice, we
have four cases (1, 4), (2, 3), (3, 2), (4, 1).
b) Three dices A,B,C are called non-transitive, if the probability that A >
B is larger than 1/2, the probability that B > C is larger than 1/2 and the
probability that C > A is larger than 1/2. Verify the non-transitivity prop-
erty for A = (1, 4, 4, 4, 4, 4), B = (3, 3, 3, 3, 3, 6) and C = (2, 2, 2, 5, 5, 5).

Properties. The following properties of conditional probability are called
Keynes postulates. While they follow immediately from the definition
of conditional probability, they are historically interesting because they
appeared already in 1921 as part of an axiomatization of probability theory:

1) P[A|B] ≥ 0.
2) P[A|A] = 1.
3) P[A|B] + P[Ac|B] = 1.
4) P[A ∩B|C] = P[A|C] · P[B|A ∩ C].

Definition. A finite set {A1, . . . , An } ⊂ A is called a finite partition of Ω if
⋃n
j=1 Aj = Ω and Aj ∩Ai = ∅ for i 6= j. A finite partition covers the entire

space with finitely many, pairwise disjoint sets.

If all possible experiments are partitioned into different events Aj and the
probabilities that B occurs under the condition Aj , then one can compute
the probability that Ai occurs knowing that B happens:

Theorem 2.1.1 (Bayes rule). Given a finite partition {A1, .., An} in A and
B ∈ A with P[B] > 0, one has

P[Ai|B] =
P[B|Ai]P[Ai]

∑n
j=1 P[B|Aj ]P[Aj ]

.
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Proof. Because the denominator is P[B] =
∑n

j=1 P[B|Aj ]P[Aj ], the Bayes
rule just says P[Ai|B]P[B] = P[B|Ai]P[Ai]. But these are by definition
both P[Ai ∩B]. �

Example. A fair dice is rolled first. It gives a random number k from
{1, 2, 3, 4, 5, 6 }. Next, a fair coin is tossed k times. Assume, we know that
all coins show heads, what is the probability that the score of the dice was
equal to 5?
Solution. Let B be the event that all coins are heads and let Aj be the
event that the dice showed the number j. The problem is to find P[A5|B].
We know P[B|Aj ] = 2−j. Because the events Aj , j = 1, . . . , 6 form a par-

tition of Ω, we have P[B] =
∑6

j=1 P[B ∩ Aj ] =
∑6

j=1 P[B|Aj ]P[Aj ] =
∑6

j=1 2
−j/6 = (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64)(1/6) = 21/128. By

Bayes rule,

P[A5|B] =
P[B|A5]P[A5]

(
∑6

j=1 P[B|Aj ]P[Aj ])
=

(1/32)(1/6)

21/128
=

2

63
.

Figure. The probabilities
P[Aj |B] in the last problem
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Example. The Girl-Boy problem has been popularized by Martin Gardner:
”Dave has two children. One child is a boy. What is the probability that
the other child is a girl”?

Most people would intuitively say 1/2 because the second event looks in-
dependent of the first. However, it is not and the initial intuition is mis-
leading. Here is the solution: first introduce the probability space of all
possible events Ω = {bg, gb, bb, gg } with P[{bg }] = P[{gb }] = P[{bb }] =
P[{gg }] = 1/4. Let B = {bg, gb, bb } be the event that there is at least one
boy and A = {gb, bg, gg } be the event that there is at least one girl. We
have

P[A|B] =
P[A ∩B]

P[B]
=

(1/2)

(3/4)
=

2

3
.
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Example. A variant of the Boy-Girl problem is due to Gary Foshee [83].
We formulate it in a simplified form: ”Dave has two children, one of whom
is a boy born at night. What is the probability that Dave has two boys?”
It is assumed of course that the probability to have a boy (b) or girl (g)
is 1/2 and that the probability to be born at night (n) or day (d) is 1/2
too. One would think that the additional information ”to be born at night”
does not influence the probability and that the overall answer is still 1/3
like in the boy-girl problem. But this is not the case. The probability space
of all events has 12 elements Ω = {(bd)(bd), (bd)(bn), (bn)(bd), (bn)(bn),
(bd)(gd), (bd)(gn), (bn)(gd), (bn)(gn), (gd)(bd), (gd)(bn), (gn)(bd), (gn)(bn),
(gd)(gd), (gd)(gn), (gn)(gd), (gn)(gn) }. The information that one of the
kids is a boy eliminates the last 4 examples. The information that the boy
is born at night only allows pairings (bn) and eliminates all cases with (bd)
if there is not also a (bn) there. We are left with an event B containing 7
cases which encodes the information that one of the kids is a boy born at
night:

B = {(bd)(bn), (bn)(bd), (bn)(bn), (bn)(gd), (bn)(gn), (gd)(bn), (gn)(bn) } .

The event A that Dave has two boys is A = {(bd)(bn), (bn)(bd), (bn)(bn) }.
The answer is the conditional probability P[A|B] = P[A ∩B]/P[B] = 3/7.
This is bigger than 1/3 the probability without the knowledge of being
born at night.

Exercise. Solve the original Foshee problem: ”Dave has two children, one
of whom is a boy born on a Tuesday. What is the probability that Dave
has two boys?”

Exercise. This version is close to the original Gardner paradox:
a) I throw two dice onto the floor. A friend who stands nearby looks at
them and tells me: ”At least one of them is head”. What is the probability
that the other is head?
b) I throw two dice onto the floor. One rolls under a bookshelf and is
invisible. My friend who stands near the coin tells me ”At least one of
them is head”. What is the probability that the hidden one is head?
Explain why in a) the probability is 1/3 and in b) the probability is 1/2.

Definition. Two events A,B in s probability space (Ω,A,P) are called in-
dependent, if

P[A ∩B] = P[A] · P[B] .

Example. The probability space Ω = {1, 2, 3, 4, 5, 6 } and pi = P[{i}] = 1/6
describes a fair dice which is thrown once. The set A = {1, 3, 5 } is the
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event that ”the dice produces an odd number”. It has the probability 1/2.
The event B = {1, 2 } is the event that the dice shows a number smaller
than 3. It has probability 1/3. The two events are independent because
P[A ∩B] = P[{1}] = 1/6 = P[A] · P[B].

Definition. Write J ⊂f I if J is a finite subset of I. A family {Ai}i∈I of σ-
sub-algebras ofA is called independent, if for every J ⊂f I and every choice
Aj ∈ Aj P[

⋂

j∈J Aj ] =
∏

j∈J P[Aj ]. A family {Xj}j∈J of random variables
is called independent, if {σ(Xj)}j∈J are independent σ-algebras. A family
of sets {Aj}j∈I is called independent, if the σ-algebras Aj = {∅, Aj, Acj ,Ω }
are independent.

Example. On Ω = {1, 2, 3, 4 } the two σ-algebrasA = {∅, {1, 3 }, {2, 4 },Ω }
and B = {∅, {1, 2 }, {3, 4 },Ω } are independent.

Properties. (1) If a σ-algebra F ⊂ A is independent to itself, then P[A ∩
A] = P[A] = P[A]2 so that for every A ∈ F , P[A] ∈ {0, 1}. Such a σ-algebra
is called P-trivial.
(2) Two sets A,B ∈ A are independent if and only if P[A∩B] = P[A]·P[B].
(3) If A,B are independent, then A,Bc are independent too.
(4) If P[B] > 0, and A,B are independent, then P[A|B] = P[A] because
P[A|B] = (P[A] · P[B])/P[B] = P[A].
(5) For independent sets A,B, the σ-algebras A = {∅, A,Ac,Ω} and B =
{∅, B,Bc,Ω} are independent.

Definition. A family I of subsets of Ω is called a π-system, if I is closed
under intersections: if A,B are in I, then A ∩B is in I. A σ-additive map
from a π-system I to [0,∞) is called a measure.

Example. 1) The family I = {∅, {1}, {2}, {3}, {1, 2}, {2, 3},Ω} is a π-system
on Ω = {1, 2, 3}.
2) The set I = {[a, b) |0 ≤ a < b ≤ 1} ∪ {∅} of all half closed intervals is a
π-system on Ω = [0, 1] because the intersection of two such intervals [a, b)
and [c, d) is either empty or again such an interval [c, b).

Definition. We use the notation An ր A if An ⊂ An+1 and
⋃

nAn = A.
Let Ω be a set. (Ω,D) is called a Dynkin system if D is a set of subsets of
Ω satisfying

(i) Ω ∈ D,
(ii) A,B ∈ D, A ⊂ B ⇒ B \A ∈ D.
(iii) An ∈ D, An ր A⇒ A ∈ D
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Lemma 2.1.2. (Ω,A) is a σ-algebra if and only if it is a π-system and a
Dynkin system.

Proof. If A is a σ-algebra, then it certainly is both a π-system and a Dynkin
system. Assume now, A is both a π-system and a Dynkin system. Given
A,B ∈ A. The Dynkin property implies that Ac = Ω \ A,Bc = Ω \ B
are in A and by the π-system property also A ∪ B = Ω \ (Ac ∩ Bc) ∈ A.
Given a sequence An ∈ A. Define Bn =

⋃n
k=1 Ak ∈ A and A =

⋃

nAn.
Then Bn ր A and by the Dynkin property A ∈ A. We see that A is a
σ-algebra. �

Definition. If I is any set of subsets of Ω, we denote by d(I) the smallest
Dynkin system, which contains I and call it the Dynkin system generated
by I.

Lemma 2.1.3. If I is a π- system, then d(I) = σ(I).

Proof. By the previous lemma, we need only to show that d(I) is a π−
system.
(i) Define D1 = {B ∈ d(I) | B ∩ C ∈ d(I), ∀C ∈ I }. Because I is a
π-system, we have I ⊂ D1.
Claim. D1 is a Dynkin system.
Proof. Clearly Ω ∈ D1. Given A,B ∈ D1 with A ⊂ B. For C ∈ I we
compute (B \ A) ∩ C = (B ∩ C) \ (A ∩ C) which is in d(I). Therefore
B\A ∈ D1. Given An ր A with An ∈ D1 and C ∈ I. Then An∩C ր A∩C
so that A ∩C ∈ d(I) and A ∈ D1.
(ii) Define D2 = {A ∈ d(I) | B ∩A ∈ d(I), ∀B ∈ d(I) }. From (i) we know
that I ⊂ D2. Like in (i), we show that D2 is a Dynkin-system. Therefore
D2 = d(I), which means that d(I) is a π-system. �

Lemma 2.1.4. (Extension lemma) Given a π-system I. If two measures µ, ν
on σ(I) satisfy µ(Ω), ν(Ω) <∞ and µ(A) = ν(A) for A ∈ I, then µ = ν.

Proof. The set D = {A ∈ σ(I) | µ(A) = ν(A) } is Dynkin system: first
of all Ω ∈ D. Given A,B ∈ D, A ⊂ B. Then µ(B \ A) = µ(B) − µ(A) =
ν(B)−ν(A) = ν(B\A) so that B\A ∈ D. Given An ∈ D with An ր A, then
the σ additivity gives µ(A) = lim supn µ(An) = lim supn ν(An) = ν(A), so
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that A ∈ D. Since D is a Dynkin system containing the π-system I, we
know that σ(I) = d(I) ⊂ D which means that µ = ν on σ(I). �

Definition. Given a probability space (Ω,A,P). Two π-systems I,J ⊂ A
are called P-independent, if for all A ∈ I and B ∈ J , P[A∩B] = P[A]·P[B].

Lemma 2.1.5. Given a probability space (Ω,A,P). Let G,H be two σ-
subalgebras of A and I and J be two π-systems satisfying σ(I) = G,
σ(J ) = H. Then G and H are independent if and only if I and J are
independent.

Proof. (i) Fix I ∈ I and define on (Ω,H) the measures µ(H) = P[I ∩
H ], ν(H) = P[I]P[H ] of total probability P[I]. By the independence of I
and J , they coincide on J and by the extension lemma (2.1.4), they agree
on H and we have P[I ∩H ] = P[I]P[H ] for all I ∈ I and H ∈ H.
(ii) Define for fixed H ∈ H the measures µ(G) = P[G ∩ H ] and ν(G) =
P[G]P[H ] of total probability P[H ] on (Ω,G). They agree on I and so on G.
We have shown that P[G∩H ] = P[G]P[H ] for all G ∈ G and all H ∈ H. �

Definition. A is an algebra if A is a set of subsets of Ω satisfying

(i) Ω ∈ A,
(ii) A ∈ A ⇒ Ac ∈ A,
(iii) A,B ∈ A ⇒ A ∩B ∈ A

Remark. We see that Ac ∩B = B \A and A ∩Bc = A \B are also in the
algebraA. The relationA∪B = (Ac∩Bc)c shows that the union A∪B in the
algebra. Therefore also the symmetric difference A∆B = (A \B)∪ (B \A)
is in the algebra. The operation ∩ is the ”multiplication” and the operation
∆ the ”addition” in the algebra, explaining the name algebra. Its up to you
to find the zero element 0∆A = A for all A and the one element 1∩A = A
in this algebra.

Definition. A σ-additive map from A to [0,∞) is called a measure.

Theorem 2.1.6 (Carathéodory continuation theorem). Any measure on an
algebra R has a unique continuation to a measure on σ(R).

Before we launch into the proof of this theorem, we need two lemmas:

Definition. Let A be an algebra and λ : A 7→ [0,∞] with λ(∅) = 0. A set
A ∈ A is called a λ-set, if λ(A ∩G) + λ(Ac ∩G) = λ(G) for all G ∈ A.
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Lemma 2.1.7. The set Aλ of λ-sets of an algebra A is again an algebra and
satisfies

∑n
k=1 λ(Ak ∩G) = λ((

⋃n
k=1Ak)∩G) for all finite disjoint families

{Ak}nk=1 and all G ∈ A.

Proof. From the definition is clear that Ω ∈ Aλ and that if B ∈ Aλ, then
Bc ∈ Aλ. Given B,C ∈ Aλ. Then A = B ∩ C ∈ Aλ. Proof. Since C ∈ Aλ,
we get

λ(C ∩ Ac ∩G) + λ(Cc ∩ Ac ∩G) = λ(Ac ∩G) .

This can be rewritten with C ∩ Ac = C ∩Bc and Cc ∩Ac = Cc as

λ(Ac ∩G) = λ(C ∩Bc ∩G) + λ(Cc ∩G) . (2.1)

Because B is a λ-set, we get using B ∩ C = A.

λ(A ∩G) + λ(Bc ∩ C ∩G) = λ(C ∩G) . (2.2)

Since C is a λ-set, we have

λ(C ∩G) + λ(Cc ∩G) = λ(G) . (2.3)

Adding up these three equations shows that B ∩ C is a λ-set. We have so
verified that Aλ is an algebra. If B and C are disjoint in Aλ we deduce
from the fact that B is a λ-set

λ(B ∩ (B ∪ C) ∩G) + λ(Bc ∩ (B ∪ C) ∩G) = λ((B ∪ C) ∩G) .

This can be rewritten as λ(B∩G)+λ(C ∩G) = λ((B∪C)∩G). The analog
statement for finitely many sets is obtained by induction. �

Definition. Let A be a σ-algebra. A map λ : A → [0,∞] is called an outer
measure, if

λ(∅) = 0,
A,B ∈ A with A ⊂ B ⇒ λ(A) ≤ λ(B).
An ∈ A ⇒ λ(

⋃

nAn) ≤
∑

n λ(An) (σ subadditivity)

Lemma 2.1.8. (Carathéodory’s lemma) If λ is an outer measure on a mea-
surable space (Ω,A), then Aλ ⊂ A defines a σ-algebra on which λ is count-
ably additive.
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Proof. Given a disjoint sequence An ∈ Aλ. We have to show that A =
⋃

nAn ∈ Aλ and λ(A) =
∑

n λ(An). By the above lemma (2.1.7), Bn =
⋃n
k=1 Ak is in Aλ. By the monotonicity, additivity and the σ -subadditivity,

we have

λ(G) = λ(Bn ∩G) + λ(Bcn ∩G) ≥ λ(Bn ∩G) + λ(Ac ∩G)

=

n
∑

k=1

λ(Ak ∩G) + λ(Ac ∩G) ≥ λ(A ∩G) + λ(Ac ∩G) .

Subadditivity for λ gives λ(G) ≤ λ(A∩G)+λ(Ac ∩G). All the inequalities
in this proof are therefore equalities. We conclude that A ∈ Aλ. Finally we
show that λ is σ additive on Aλ: for any n ≥ 1 we have

n
∑

k=1

λ(Ak) ≤ λ(

n
⋃

k=1

Ak ≤
∞
∑

k=1

λ(Ak) .

Taking the limit n→ ∞ shows that the right hand side and left hand side
agree verifying the σ-additivity. �

We now prove the Caratheodory’s continuation theorem (2.1.6):

Proof. Given an algebra R with a measure µ. Define A = σ(R) and the
σ-algebra P consisting of all subsets of Ω. Define on P the function

λ(A) = inf{
∑

n∈N

µ(An) | {An}n∈N sequence in R satisfying A ⊂
⋃

n

An } .

(i) λ is an outer measure on P .
λ(∅) = 0 and λ(A) ≤ λ(B) for A ⊂ A are obvious. To see the σ subad-
ditivity, take a sequence An ∈ P with λ(An) < ∞ and fix ǫ > 0. For all
n ∈ N, one can (by the definition of λ) find a sequence {Bn,k}k∈N in R
such that An ⊂ ⋃

k∈NBn,k and
∑

k∈N µ(Bn,k) ≤ λ(An)+ ǫ2−n. Define A =
⋃

n∈NAn ⊂ ⋃

n,k∈NBn,k, so that λ(A) ≤ ∑

n,k µ(Bn,k) ≤ ∑

n λ(An) + ǫ.
Since ǫ was arbitrary, the σ-subadditivity is proven.

(ii) λ = µ on R.
Given A ∈ R. Clearly λ(A) ≤ µ(A). Suppose that A ⊂ ⋃

nAn, with An ∈
R. Define a sequence {Bn}n∈N of disjoint sets inR inductively. That isB1 =
A1, Bn = An ∩ (

⋃

k<nAk)
c such that Bn ⊂ An and

⋃

nBn =
⋃

nAn ⊃ A.
From the σ-additivity of µ on R follows

µ(A) ≤ µ(
⋃

n

An) = µ(
⋃

n

Bn) =
∑

n

µ(Bn) .

Since the choice of An is arbitrary, this gives µ(A) ≤ λ(A).

(iii) Let Pλ be the set of λ-sets in P . Then R ⊂ Pλ.
Given A ∈ R and G ∈ P . There exists a sequence {Bn}n∈N in R such that
G ⊂ ⋃

nBn and
∑

n µ(Bn) ≤ λ(G) + ǫ. By the definition of λ
∑

n

µ(Bn) =
∑

n

µ(A ∩Bn) +
∑

n

µ(Ac ∩Bn) ≥ λ(A ∩G) + λ(Ac ∩G)
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because A ∩ G ⊂ ⋃

nA ∩ Bn and Ac ∩ G ⊂ ⋃

nA
c ∩ Bn. Since ǫ is ar-

bitrary, we get λ(G) ≥ λ(A ∩ G) + λ(Ac ∩ G). On the other hand, since
λ is sub-additive, we have also λ(G) ≤ λ(A∩G)+λ(Ac∩G) and A is a λ-set.

(iv) By (i) λ is an outer measure on (Ω,P). Since by step (iii), R ⊂ Pλ,
we know by Caratheodory’s lemma that A ⊂ Pλ, so that we can define µ
on A as the restriction of λ to A. By step (ii), this is an extension of the
measure µ on R.

(v) The uniquness follows from Lemma (2.1.4). �

Here is an overview over the possible set of subsets of Ω we have considered.
We also include the notion of ring and σ-ring, which is often used in measure
theory and which differ from the notions of algebra or σ-algebra in that
Ω does not have to be in it. In probability theory, those notions are not
needed at first. For an introduction into measure theory, see [3, 37, 17].

Set of Ω subsets contains closed under
topology ∅,Ω arbitrary unions, finite intersections
π-system finite intersections
Dynkin system Ω increasing countable union, difference
ring ∅ complement and finite unions
σ-ring ∅ countably many unions and complement
algebra Ω complement and finite unions
σ-algebra ∅,Ω countably many unions and complement
Borel σ-algebra ∅,Ω σ-algebra generated by the topology

Remark. The name ”ring” has its origin to the fact that with the ”addition”
A + B = A∆B = (A ∪ B) \ (A ∩ B) and ”multiplication” A · B = A ∩ B,
a ring of sets becomes an algebraic ring like the set of integers, in which
rules like A · (B + C) = A · B + A · C hold. The empty set ∅ is the zero
element because A∆∅ = A for every set A. If the set Ω is also in the ring,
one has a ring with 1 because the identity A ∩ Ω = A shows that Ω is the
1-element in the ring.
Lets add some definitions, which will occur later:

Definition. A nonzero measure µ on a measurable space (Ω,A) is called
positive, if µ(A) ≥ 0 for all A ∈ A. If µ+, µ− are two positive measures
so that µ(A) = µ+ − µ− then this is called the Hahn decomposition of µ.
A measure is called finite if it has a Hahn decomposition and the positive
measure |µ| defined by |µ|(A) = µ+(A) + µ−(A) satisfies |µ|(Ω) <∞.

Definition. Let ν, µ be two measures on the measurable space (Ω,A). We
write ν << µ if for every A in the σ-algebra A, the condition µ(A) = 0
implies ν(A) = 0. One says that ν is absolutely continuous with respect to
µ.

Example. If µ = dx is the Lebesgue measure on (Ω,A) = ([0, 1],A) sat-

isfying µ([a, b]) = b − a for every interval and if ν([a, b]) =
∫ b

a x
2 dx then

ν << µ.
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Example. If µ = dx is the Lebesgue measure on ([0, 1],A) and ν = δ1/2 is
the point measure which satisfies ν(A) = 1 if 1/2 ∈ A and ν(A) = 0 else.
Then ν is not absolutely continuous with respect to µ. Indeed, for the set
A = {1/2}, we have µ(A) = 0 but ν(A) = 1.

2.2 Kolmogorov’s 0− 1 law, Borel-Cantelli lemma

Definition. Given a family {Ai }i∈I of σ-subalgebras ofA. For any nonempty
set J ⊂ I, let AJ :=

∨

j∈J Aj be the σ-algebra generated by
⋃

j∈J Aj .
Define also A∅ = {∅,Ω }. The tail σ-algebra T of {A}i∈I is defined as
T =

⋂

J⊂I,J finiteAJc , where J c = I \ J .

Theorem 2.2.1 (Kolmogorov’s 0 − 1 law). If {Ai}i∈I are independent σ-
algebras, then the tail σ-algebra T is P-trivial: P[A] = 0 or P[A] = 1 for
every A ∈ T .

Proof. (i) The algebras AF and AG are independent, whenever F,G ⊂ I
are disjoint.
Proof. Define for H ⊂ I the π-system

IH = {A ∈ A | A =
⋂

i∈K
Ai,K ⊂f H,Ai ∈ Ai} .

The π-systems IF and IG are independent and generate the σ-algebrasAF

and AG. Use lemma (2.1.5).
(ii) Especially: AJ is independent of AJc for every J ⊂ I.
(iii) T is independent of AI .
Proof. T =

⋂

J⊂fI
AJc is independent of any AK for K ⊂f I. It is

therefore independent to the π-system II which generates AI . Use again
lemma (2.1.5).
(iv) T is a sub-σ-algebra of AI . Therefore T is independent of itself which
implies that it is P -trivial. �

Example. Let Xn be a sequence of independent random variables and let

A = {ω ∈ Ω |
∞
∑

n=1

Xn converges } .

Then P[A] = 0 or P[A] = 1. Proof. Because
∑∞
n=1Xn converges if and only

if Yn =
∑∞
k=nXk converges, we have A ∈ σ(An, An+1 . . . ). Therefore, A

is in T , the tail σ- algebra defined by the independent σ-algebras An =
σ(Xn). If for example, if Xn takes values ±1/n, each with probability 1/2,
then P[A] = 0. If Xn takes values ±1/n2 each with probability 1/2, then
P[A] = 1. The decision whether P[A] = 0 or P[A] = 1 is related to the
convergence or divergence of a series and will be discussed later again.
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Example. Let {An}n∈N be a sequence of subsets of Ω. The set

A∞ := lim sup
n→∞

An =

∞
⋂

m=1

⋃

n≥m
An

consists of the set {ω ∈ Ω} such that ω ∈ An for infinitely many n ∈ N.
The set A∞ is contained in the tail σ-algebra of An = {∅, An, Acn,Ω }. It
follows from Kolmogorov’s 0 − 1 law that P[A∞] ∈ {0, 1} if An ∈ A and
{An } are P-independent.

Remark. In the theory of dynamical systems, a measurable map T : Ω → Ω
of a probability space (Ω,A,P) onto itself is called a K-system, if there
exists a σ-subalgebra F ⊂ A which satisfies F ⊂ σ(T (F)) for which the
sequence Fn = σ(T n(F)) satisfies FN = A and which has a trivial tail
σ-algebra T = {∅,Ω}. An example of such a system is a shift map T (x)n =
xn+1 on Ω = ∆N, where ∆ is a compact topological space. The K-system
property follows from Kolmogorov’s 0−1 law: take F =

∨∞
k=1 T

k(F0), with
F0 = {x ∈ Ω = ∆Z | x0 = r ∈ ∆ }.

Theorem 2.2.2 (First Borel-Cantelli lemma). Given a sequence of events
An ∈ A. Then

∑

n∈N

P[An] <∞ ⇒ P[A∞] = 0 .

Proof. P[A∞] = limn→∞ P[
⋃

k≥nAk] ≤ limn→∞
∑

k≥n P[Ak] = 0.
�

Theorem 2.2.3 (Second Borel-Cantelli lemma). For a sequence An ∈ A of
independent events,

∑

n∈N

P[An] = ∞ ⇒ P[A∞] = 1 .

Proof. For every integer n ∈ N,

P[
⋂

k≥n
Ack] =

∏

k≥n
P[Ack]

=
∏

k≥n
(1− P[Ak]) ≤

∏

k≥n
exp(−P[Ak])

= exp(−
∑

k≥n
P[Ak]) .
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The right hand side converges to 0 for n→ ∞. From

P[Ac∞] = P[
⋃

n∈N

⋂

k≥n
Ack] ≤

∑

n∈N

P[
⋂

k≥n
Ack] = 0

follows P[Ac∞] = 0. �

Example. The following example illustrates that independence is necessary
in the second Borel-Cantelli lemma: take the probability space ([0, 1],B,P),
where P = dx is the Lebesgue measure on the Borel σ-algebra B of [0, 1].
For An = [0, 1/n] we get A∞ = ∅ and so P[A∞] = 0. But because P[An] =
1/n we have

∑∞
n=1 P[An] =

∑∞
n=1

1
n = ∞ because the harmonic series

∑∞
n=1 1/n diverges:

R
∑

n=1

1

n
≥

∫ R

1

1

x
dx = log(R) .

Example. (”Monkey typing Shakespeare”) Writing a novel amounts to en-
ter a sequence of N symbols into a computer. For example, to write ”Ham-
let”, Shakespeare had to enter N = 180′000 characters. A monkey is placed
in front of a terminal and types symbols at random, one per unit time, pro-
ducing a random sequenceXn of identically distributed sequence of random
variables in the set of all possible symbols. If each letter occurs with prob-
ability at least ǫ, then the probability that Hamlet appears when typing
the first N letters is ǫN . Call A1 this event and call Ak the event that
this happens when typing the (k − 1)N + 1 until the kN ’th letter. These
sets Ak are all independent and have all equal probability. By the second
Borel-Cantelli lemma, the events occur infinitely often. This means that
Shakespeare’s work is not only written once, but infinitely many times. Be-
fore we model this precisely, lets look at the odds for random typing. There
are 30N possibilities to write a word of length N with 26 letters together
with a minimal set of punctuation: a space, a comma, a dash and a period
sign. The chance to write ”To be, or not to be - that is the question.”
with 43 random hits onto the keyboard is 1/1063.5. Note that the life time
of a monkey is bounded above by 131400000 ∼ 108 seconds so that it is
even unlikely that this single sentence will ever be typed. To compare the
probability, it is helpful to put the result into a list of known large numbers
[10, 38].

104 One ”myriad”. The largest numbers, the Greeks were considering.
105 The largest number considered by the Romans.
1010 The age of the universe in years.
1017 The age of the universe in seconds.
1022 Distance to our neighbor galaxy Andromeda in meters.
1023 Number of atoms in two gram Carbon which is 1 Avogadro.
1027 Estimated size of universe in meters.
1030 Mass of the sun in kilograms.
1041 Mass of our home galaxy ”milky way” in kilograms.
1051 Archimedes’s estimate of number of sand grains in universe.
1080 The number of protons in the universe.
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10100 One ”googol”. (Name coined by 9 year old nephew of E. Kasner).
10153 Number mentioned in a myth about Buddha.
10155 Size of ninth Fermat number (factored in 1990).

1010
6

Size of large prime number (Mersenne number, Nov 1996).

1010
7

Years, ape needs to write ”hound of Baskerville” (random typing).

1010
33

Inverse is chance that a can of beer tips by quantum fluctuation.

1010
42

Inverse is probability that a mouse survives on the sun for a week.

1010
50

Estimated number of possible games of chess.

1010
51

Inverse is chance to find yourself on Mars by quantum fluctuations

1010
100

One ”Gogoolplex”

Lemma 2.2.4. Given a random variable X on a finite probability space ∆,
there exists a sequence X1, X2, . . . of independent random variables for
which all random variables Xi have the same distribution as X .

Proof. The product space Ω = ∆N is compact by Tychonov’s theorem. Let
A be the Borel-σ-algebra on Ω and let Qdenote the probability measure on
∆. The probability measure P = QZ is defined on (Ω,A) has the property
that for any cylinder set

Z(w) = {ω ∈ Ω | ωk = rk, ωk+1 = rk+1, . . . , ωn = rn }

defined by a ”word” w = [rk, , . . . rn],

P[Z(w)] =
n
∏

i=k

P[ωi = ri] =
n
∏

i=k

Q({ri}) .

Finite unions of cylinder sets form an algebraR which generates σ(R) = A.
The measure P is σ-additive on this algebra. By Carathéodory’s continu-
ation theorem (2.1.6), there exists a measure P on (Ω,A). For this proba-
bility space (Ω,A,P), the random variables Xi(ω) = ωi) are independent
and have the same distribution as X . �

Remark. The proof made use of Tychonov’s theorem which tells that the
product of compact topological spaces is compact. The theorem is equiv-
alent to the Axiom of choice and one of the fundamental assumptions of
mathematics. Since Tychonov’s theorem is known to be equivalent to the
axiom of choice, we can assume it to be a fundamental axiom itself. The
compactness of a countable product of compact metric spaces which was
needed in the proof could be proven without the axiom using a diagonal
argument. It was easier to just refer to a fundamental assumption of math-
ematics.
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Example. In the example of the monkey writing a novel, the process of
authoring is given by a sequence of independent random variables Xn(ω) =
ωn. The event that Hamlet is written during the time [Nk + 1, N(k + 1)]
is given by a cylinder set Ak. They have all the same probability. By the
second Borel-Cantelli lemma, P[A∞] = 1. The set A∞, the event that the
Monkey types this novel arbitrarily often, has probability 1.

Remark. Lemma (2.2.4) can be generalized: given any sequence of prob-
ability spaces (R,B,Pi) one can form the product space (Ω,A,P). The
random variables Xi(ω) = ωi are independent and have the law Pi. An
other construction of independent random variables is given in [109].

Exercise. In this exercise, we experiment with some measures on Ω = N

[113].
a) The distance d(n,m) = |n −m| defines a topology O on Ω = N. What
is the Borel σ-algebra A generated by this topology?
b) Show that for every λ > 0

P[A] =
∑

n∈A
e−λ

λn

n!

is a probability measure on the measurable space (Ω,A) considered in a).
c) Show that for every s > 1

P[A] =
∑

n∈A
ζ(s)−1n−s

is a probability measure on the measurable space (Ω,A). The function

s 7→ ζ(s) =
∑

n∈Ω

1

ns

is called the Riemann zeta function.
d) Show that the sets Ap = {n ∈ Ω| p divides n} with prime p are indepen-
dent. What happens if p is not prime.
e) Give a probabilistic proof of Euler’s formula

1

ζ(s)
=

∏

p prime

(1− 1

ps
) .

f) Let A be the set of natural numbers which are not divisible by a square
different from 1. Prove

P[A] =
1

ζ(2s)
.
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2.3 Integration, Expectation, Variance

In this entire section, (Ω,A,P) will denote a fixed probability space.

Definition. A statement S about points ω ∈ Ω is a map from Ω to {true, false}.
A statement is said to hold almost everywhere, if the set P[{ω | S(ω) =
false }] = 0. For example, the statement ”let Xn → X almost everywhere”,
is a short hand notation for the statement that the set {x ∈ Ω | Xn(x) →
X(x) } is measurable and has measure 1.

Definition. The algebra of all random variables is denoted by L. It is a
vector space over the field R of the real numbers in which one can multiply.
A elementary function or step function is an element of L which is of the
form

X =

n
∑

i=1

αi · 1Ai

with αi ∈ R and where Ai ∈ A are disjoint sets. Denote by S the algebra
of step functions. For X ∈ S we can define the integral

E[X ] :=

∫

Ω

X dP =
n
∑

i=1

αiP[Ai] .

Definition. Define L1 ⊂ L as the set of random variables X , for which

sup
Y ∈S,Y≤|X|

∫

Y dP

is finite. For X ∈ L1, we can define the integral or expectation

E[X ] :=

∫

X dP = sup
Y ∈S,Y≤X+

∫

Y dP − sup
Y ∈S,Y≤X−

∫

Y dP ,

where X+ = X ∨ 0 = max(X, 0) and X− = −X ∨ 0 = max(−X, 0). The
vector space L1 is called the space of integrable random variables. Similarly,
for p ≥ 1 write Lp for the set of random variablesX for which E[|X |p] <∞.

Definition. It is custom to write L1 for the space L1, where random vari-
ables X,Y for which E[|X − Y |] = 0 are identified. Unlike Lp, the spaces
Lp are Banach spaces. We will come back to this later.

Definition. For X ∈ L2, we can define the variance

Var[X ] := E[(X − E[X ])2] = E[X2]− E[X ]2 .

The nonnegative number

σ[X ] = Var[X ]1/2

is called the standard deviation of X .
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The names expectation and standard deviation pretty much describe al-
ready the meaning of these numbers. The expectation is the ”average”,
”mean” or ”expected” value of the variable and the standard deviation
measures how much we can expect the variable to deviate from the mean.

Example. The m’th power random variable X(x) = xm on ([0, 1],B,P) has
the expectation

E[X ] =

∫ 1

0

xm dx =
1

m+ 1
,

the variance

Var[X ] = E[X2]− E[X ]2 =
1

2m+ 1
− 1

(m+ 1)2
=

m2

(1 +m)2(1 + 2m)

and the standard deviation σ[X ] = m

(1+m)
√

(1+2m)
. Both the expectation

as well as the standard deviation converge to 0 if m→ ∞.

Definition. If X is a random variable, then E[Xm] is called the m’th mo-
ment of X . The m’th central moment of X is defined as E[(X − E[X ])m].

Definition. The moment generating function of X is defined as MX(t) =
E[etX ]. The moment generating function often allows a fast simultaneous
computation of all the moments. The function

κX(t) = log(MX(t))

is called the cumulant generating function.

Example. For X(x) = x on [0, 1] we have both

MX(t) =

∫ 1

0

etx dx =
(et − 1)

t
=

∞
∑

m=1

tm−1

m!
=

∞
∑

m=0

tm

(m+ 1)!

and

MX(t) = E[etX ] = E[

∞
∑

m=0

tmXm

m!
] =

∞
∑

m=0

tm
E[Xm]

m!
.

Comparing coefficients shows E[Xm] = 1/(m+ 1).

Example. Let Ω = R. For given m ∈ R, σ > 0, define the probability

measure P[[a, b]] =
∫ b

a f(x) dx with

f(x) =
1√
2πσ2

e−
(x−m)2

2σ2 .

This is a probability measure because after a change of variables y =
(x−m)/(

√
2σ), the integral

∫∞
−∞ f(x) dx becomes 1√

π

∫∞
−∞ e−y

2

dy = 1. The

random variable X(x) = x on (Ω,A,P) is a random variable with Gaussian
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distribution mean m and standard deviation σ. One simply calls it a Gaus-
sian random variable or random variable with normal distribution. Lets
justify the constants m and σ: the expectation of X is E[X ] =

∫

X dP =
∫∞
−∞ xf(x) dx = m. The variance is E[(X −m)2] =

∫∞
−∞ x2f(x) dx = σ2

so that the constant σ is indeed the standard deviation. The moment gen-
erating function of X is MX(t) = emt+σ

2t2/2. The cumulant generating
function is therefore κX(t) = mt+ σ2t2/2.

Example. If X is a Gaussian random variable with mean m = 0 and
standard deviation σ, then the random variable Y = eX has the mean
E[Y ] = E[eX ] = eσ

2/2. Proof:

1√
2πσ2

∫ ∞

−∞
ey−

y2

2σ2 dy = eσ
2/2 1√

2πσ

∫ ∞

−∞
e

(y−σ2)2

2σ2 dy = eσ
2/2 .

The random variable Y has the log normal distribution.

Example. A random variable X ∈ L2 with standard deviation σ = 0 is a
constant random variable. It satisfies X(ω) = m for all ω ∈ Ω.

Definition. If X ∈ L2 is a random variable with mean m and standard
deviation σ, then the random variable Y = (X−m)/σ has the mean m = 0
and standard deviation σ = 1. Such a random variable is called normalized.
One often only adjusts the mean and calls X −E[X ] the centered random
variable.

Exercise. The Rademacher functions rn(x) are real-valued functions on
[0, 1] defined by

rn(x) =

{

1 2k−1
n ≤ x < 2k

n

−1 2k
n ≤ x < 2k+1

n

.

They are random variables on the Lebesgue space ([0, 1],A,P = dx).

a) Show that 1−2x =
∑∞

n=1
rn(x)
2n . This means that for fixed x, the sequence

rn(x) is the binary expansion of 1− 2x.
b) Verify that rn(x) = sign(sin(2π2n−1x)) for almost all x.
c) Show that the random variables rn(x) on [0, 1] are IID random variables
with uniform distribution on {−1, 1 }.
d) Each rn(x) has the mean E[rn] = 0 and the variance Var[rn] = 1.
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Exercise. Given any 0− 1 data of length n. Let k be the number of ones. If
p = k/n is the mean, verify that we can compute the variance of the data
as p(1− p). A statistician would prove it as follows:

1

n

n
∑

i=1

(xi − p)2 =
1

n
(k(1− p)2 + (n− k)(0− p)2)

= (k − 2kp+ np2)/n = p− 2p+ p2 = p2 − p = p(1− p) .

Give a shorter proof of this using E[X2] = E[X ] and the formulas for
Var[X ].

2.4 Results from real analysis

In this section we recall some results of real analysis with their proofs.
In the measure theory or real analysis literature, it is custom to write
∫

f(x) dµ(x) instead of E[X ] or f, g, h, . . . instead of X,Y, Z, . . . , but this
is just a change of vocabulary. What is special about probability theory is
that the measures µ are probability measures and so finite.

Theorem 2.4.1 (Monotone convergence theorem, Beppo Lévi 1906). Let Xn

be a sequence of random variables in L1 with 0 ≤ X1 ≤ X2, . . . and assume
X = limn→∞Xn converges point wise. If supn E[Xn] < ∞, then X ∈ L1

and
E[X ] = lim

n→∞
E[Xn] .
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Proof. Because we can replace Xn by Xn − X1, we can assume Xn ≥ 0.
Find for each n a monotone sequence of step functions Xn,m ∈ S with
Xn = supmXn,m. Consider the sequence of step functions

Yn := sup
1≤k≤n

Xk,n ≤ sup
1≤k≤n

Xk,n+1 ≤ sup
1≤k≤n+1

Xk,n+1 = Yn+1 .

Since Yn ≤ supnm=1Xm = Xn also E[Yn] ≤ E[Xn]. One checks that
supn Yn = X implies supn E[Yn] = supY ∈S,Y≤X E[Y ] and concludes

E[X ] = sup
Y ∈S,Y≤X

E[Y ] = sup
n

E[Yn] ≤ sup
n

E[Xn] ≤ E[sup
n
Xn] = E[X ] .

We have used the monotonicity E[Xn] ≤ E[Xn+1] in supn E[Xn] = E[X ].
�

Theorem 2.4.2 (Fatou lemma, 1906). Let Xn be a sequence of random
variables in L1 with |Xn| ≤ X for some X ∈ L1. Then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn] ≤ lim sup
n→∞

E[Xn] ≤ E[lim sup
n→∞

Xn] .

Proof. For p ≥ n, we have

inf
m≥n

Xm ≤ Xp ≤ sup
m≥n

Xm .

Therefore

E[ inf
m≥n

Xm] ≤ E[Xp] ≤ E[ sup
m≥n

Xm] .

Because p ≥ n was arbitrary, we have also

E[ inf
m≥n

Xm] ≤ inf
p≥n

E[Xp] ≤ sup
p≥n

E[Xp] ≤ E[ sup
m≥n

Xm] .

Since Yn = infm≥nXm is increasing with supn E[Yn] < ∞ and Zn =
supm≥nXm is decreasing with infn E[Zn] > −∞ we get from Beppo-Levi
theorem (2.4.1) that Y = supn Yn = lim supnXn and Z = infn Zn =
lim infnXn are in L1 and

E[lim inf
n

Xn] = sup
n

E[ inf
m≥n

Xm] ≤ sup
n

inf
m≥n

E[Xm] = lim inf
n

E[Xn]

≤ lim sup
n

E[Xn] = inf
n

sup
m≥n

E[Xm]

≤ inf
n

E[ sup
m≥n

Xm] = E[lim sup
n

Xn] .

�
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Theorem 2.4.3 (Lebesgue’s dominated convergence theorem, 1902). Let Xn

be a sequence in L1 with |Xn| ≤ Y for some Y ∈ L1. If Xn → X almost
everywhere, then E[Xn] → E[X ].

Proof. Since X = lim infnXn = lim supnXn we know that X ∈ L1 and
from Fatou lemma (2.4.2)

E[X ] = E[lim inf
n

Xn] ≤ lim inf
n

E[Xn]

≤ lim sup
n

E[Xn] ≤ E[lim sup
n

Xn] = E[X ] .

�

A special case of Lebesgue’s dominated convergence theorem is when Y =
K is constant. The theorem is then called the bounded dominated con-
vergence theorem. It says that E[Xn] → E[X ] if |Xn| ≤ K and Xn → X
almost everywhere.

Definition. Define also for p ∈ [1,∞) the vector spaces Lp = {X ∈ L | |X |p ∈
L1 } and L∞ = {X ∈ L | ∃K ∈ R X ≤ K, almost everywhere }.

Example. For Ω = [0, 1] with the Lebesgue measure P = dx and Borel
σ-algebra A, look at the random variable X(x) = xα, where α is a real
number. Because X is bounded for α > 0, we have then X ∈ L∞. For

α < 0, the integral E[|X |p] =
∫ 1

0 x
αp dx is finite if and only if αp < 1 so

that X is in Lp whenever p > 1/α.

2.5 Some inequalities

Definition. A function h : R → R is called convex, if there exists for all
x0 ∈ R a linear map l(x) = ax+b such that l(x0) = h(x0) and for all x ∈ R

the inequality l(x) ≤ h(x) holds.

Example. h(x) = x2 is convex, h(x) = ex is convex, h(x) = x is convex.
h(x) = −x2 is not convex, h(x) = x3 is not convex on R but convex on
R+ = [0,∞).
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Figure. The Jensen inequality in
the case Ω = {u, v }, P[{u}] =
P[{v}] = 1/2 and with X(u) =
a,X(v) = b. The function h in
this picture is a quadratic func-
tion of the form h(x) = (x−s)2+
t.

E[X]=(a+b)/2

E[h(X)]
=(h(a)+h(b))/2

h(E[X])
=h((a+b)/2)

a b

h(a)

h(b)

Theorem 2.5.1 (Jensen inequality). Given X ∈ L1. For any convex function
h : R → R, we have

E[h(X)] ≥ h(E[X ]) ,

where the left hand side can also be infinite.

Proof. Let l be the linear map defined at x0 = E[X ]. By the linearity and
monotonicity of the expectation, we get

h(E[X ]) = l(E[X ]) = E[l(X)] ≤ E[h(X)] .

�

Example. Given p ≤ q. Define h(x) = |x|q/p. Jensen’s inequality gives
E[|X |q] = E[h(|X |p)] ≤ h(E[|X |p]) = E[|X |p]q/p. This implies that ||X ||q :=
E[|X |q]1/q ≥ E[|X |p]1/p = ||X ||p for p ≤ q and so

L∞ ⊂ Lq ⊂ Lp ⊂ L1

for p ≤ q. The smallest space is L∞ which is the space of all bounded
random variables.

Exercise. Assume X is a nonnegative random variable for which X and
1/X are both in L1. Show that E[X + 1/X ] ≥ 2.

We have defined Lp as the set of random variables which satisfy E[|X |p] <
∞ for p ∈ [1,∞) and |X | ≤ K almost everywhere for p = ∞. The vector
space Lp has the semi-norm ||X ||p = E[|X |p]1/p rsp. ||X ||∞ = inf{K ∈
R | |X | ≤ K almost everywhere }.
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Definition. One can construct from Lp a real Banach space Lp = Lp/N
which is the quotient of Lp with N = {X ∈ Lp | ||X ||p = 0 }. Without this
identification, one only has a pre-Banach space in which the property that
only the zero element has norm zero is not necessarily true. Especially, for
p = 2, the space L2 is a real Hilbert space with inner product < X, Y >=
E[XY ].

Example. The function f(x) = 1Q(x) which assigns values 1 to rational
numbers x on [0, 1] and the value 0 to irrational numbers is different from
the constant function g(x) = 0 in Lp. But in Lp, we have f = g.
The finiteness of the inner product follows from the following inequality:

Theorem 2.5.2 (Hölder inequality, Hölder 1889). Given p, q ∈ [1,∞] with
p−1 + q−1 = 1 and X ∈ Lp and Y ∈ Lq. Then XY ∈ L1 and

||XY ||1 ≤ ||X ||p||Y ||q .

Proof. The random variables X,Y are defined over a probability space
(Ω,A,P). We will use that p−1 + q−1 = 1 is equivalent to q + p = pq or
q(p − 1) = p. Without loss of generality we can restrict us to X,Y ≥ 0
because replacing X with |X | and Y with |Y | does not change anything.
We can also assume ||X ||p > 0 because otherwise X = 0, where both sides
are zero. We can write therefore X instead of |X | and assume X is not
zero. The key idea of the proof is to introduce a new probability measure

Q =
XpP

E[Xp]
.

If P[A] =
∫

A
1dP(x) then Q[A] = [

∫

A
Xp(x)dP(x)]/E[Xp] so that Q[Ω] =

E[Xp]/E[Xp] = 1 and Q is a probability measure. Let us denote the ex-
pectation with respect to this new measure with EQ. We define the new
random variable U = 1{X>0}Y/X

p−1. Jensen’s inequality applied to the
convex function h(x) = xq gives

EQ[U ]q ≤ EQ[U
q] . (2.4)

Using

EQ[U ] = EQ[
Y

Xp−1
] =

E[XY ]

E[Xp]

and

EQ[U
q] = EQ[

Y q

Xq(p−1)
] = EQ[

Y q

Xp
] =

E[Y q]

E[Xp]
,

Equation (2.4) can be rewritten as

E[XY ]q

E[Xp]q
≤ E[Y q]

E[Xp]
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which implies

E[XY ] ≤ E[Y q]1/qE[Xp]1−1/q = E[Y q]1/qE[Xp]1/p .

The last equation rewrites the claim ||XY ||1 ≤ ||X ||p||Y ||q in different
notation. �

A special case of Hölder’s inequality is the Cauchy-Schwarz inequality

||XY ||1 ≤ ||X ||2 · ||Y ||2 .

The semi-norm property of Lp follows from the following fact:

Theorem 2.5.3 (Minkowski inequality (1896)). Given p ∈ [1,∞] and X,Y ∈
Lp. Then

||X + Y ||p ≤ ||X ||p + ||Y ||p .

Proof. We use Hölder’s inequality from below to get

E[|X + Y |p] ≤ E[|X ||X + Y |p−1] + E[|Y ||X + Y |p−1] ≤ ||X ||pC + ||Y ||pC ,

where C = |||X + Y |p−1||q = E[|X + Y |p]1/q which leads to the claim. �

Definition. We use the short-hand notation P[X ≥ c] for P[{ω ∈ Ω | X(ω) ≥
c }].

Theorem 2.5.4 (Chebychev-Markov inequality). Let h be a monotone func-
tion on R with h ≥ 0. For every c > 0, and h(X) ∈ L1 we have

h(c) · P[X ≥ c] ≤ E[h(X)] .

Proof. Integrate the inequality h(c)1X≥c ≤ h(X) and use the monotonicity
and linearity of the expectation. �
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Figure. The proof of the
Chebychev-Markov inequality in
the case h(x) = x. The left hand
side h(c) ·P[X ≥ c] is the area of
the rectangles {X ≥ c}× [0, h(x)]
and E[h(X)] = E[X ] is the area
under the graph of X.
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Example. h(x) = |x| leads to P[|X | ≥ c] ≤ ||X ||1/c which implies for
example the statement

E[|X |] = 0 ⇒ P[X = 0] = 1 .

Exercise. Prove the Chernoff bound

P[X ≥ c] ≤ inft≥0 e
−tcMX(t)

where MX(t) = E[eXt] is the moment generating function of X .

An important special case of the Chebychev-Markov inequality is the Cheby-
chev inequality:

Theorem 2.5.5 (Chebychev inequality). If X ∈ L2, then

P[|X − E[X ]| ≥ c] ≤ Var[X ]

c2
.

Proof. Take h(x) = x2 and apply the Chebychev-Markov inequality to the
random variable Y = X − E[X ] ∈ L2 satisfying h(Y ) ∈ L1. �

Definition. For X,Y ∈ L2 define the covariance

Cov[X,Y ] := E[(X − E[X ])(Y − E[Y ])] = E[XY ]− E[X ]E[Y ] .

Two random variables in L2 are called uncorrelated if Cov[X,Y ] = 0.

Example. We have Cov[X,X ] = Var[X ] = E[(X − E[X ])2] for a random
variable X ∈ L2.
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Remark. The Cauchy-Schwarz-inequality can be restated in the form

|Cov[X,Y ]| ≤ σ[X ]σ[Y ]

Definition. The regression line of two random variables X,Y is defined as
y = ax+ b, where

a =
Cov[X,Y ]

Var[X ]
, b = E[Y ]− aE[X ] .

If Ω = {1, . . . , n } is a finite set, then the random variables X,Y define the
vectors

X = (X(1), . . . , X(n)), Y = (Y (1), . . . , Y (n))

or n data points (X(i), Y (i)) in the plane. As will follow from the proposi-
tion below, the regression line has the property that it minimizes the sum
of the squares of the distances from these points to the line.

Figure. Regression line com-
puted from a finite set of data
points (X(i), Y (i)).

Example. If X,Y are independent, then a = 0. It follows that b = E[Y ].

Example. If X = Y , then a = 1 and b = 0. The best guess for Y is X .

Proposition 2.5.6. If y = ax + b is the regression line of of X,Y , then the
random variable Ỹ = aX + b minimizes Var[Y − Ỹ ] under the constraint
E[Y ] = E[Ỹ ] and is the best guess for Y , when knowing only E[Y ] and
Cov[X,Y ]. We check Cov[X,Y ] = Cov[X, Ỹ ].

Proof. To minimize Var[aX+b−Y ] under the constraint E[aX+b−Y ] = 0 is
equivalent to find (a, b) which minimizes f(a, b) = E[(aX + b− Y )2] under
the constraint g(a, b) = E[aX + b − Y ] = 0. This least square solution
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can be obtained with the Lagrange multiplier method or by solving b =
E[Y ]−aE[X ] and minimizing h(a) = E[(aX−Y−E[aX−Y ])2] = a2(E[X2]−
E[X ]2)−2a(E[XY ]−E[X ]E[Y ]) = a2Var[X ]−2aCov[X,Y ]. Setting h′(a) =
0 gives a = Cov[X,Y ]/Var[X ]. �

Definition. If the standard deviations σ[X ], σ[Y ] are both different from
zero, then one can define the correlation coefficient

Corr[X,Y ] =
Cov[X,Y ]

σ[X ]σ[Y ]

which is a number in [−1, 1]. Two random variables in L2 are called un-
correlated if Corr[X,Y ] = 0. The other extreme is |Corr[X,Y ]| = 1, then
Y = aX + b by the Cauchy-Schwarz inequality.

Theorem 2.5.7 (Pythagoras). If two random variables X,Y ∈ L2 are
independent, then Cov[X,Y ] = 0. If X and Y are uncorrelated, then
Var[X + Y ] = Var[X ] + Var[Y ].

Proof. We can find monotone sequences of step functions

Xn =

n
∑

i=1

αi1Ai → X ,Yn =

n
∑

j=1

βj · 1Bi → Y .

We can choose these functions in such a way that Ai ∈ A = σ(X) and
Bj ∈ B = σ(Y ). By the Lebesgue dominated convergence theorem (2.4.3),
E[Xn] → E[X ] and E[Yn] → E[Y ] almost everywhere. Compute Xn ·
Yn =

∑n
i,j=1 αiβj1Ai∩Bj . By the Lebesgue dominated convergence theo-

rem (2.4.3) again, E[XnYn] → E[XY ]. By the independence of X,Y we
have E[XnYn] = E[Xn] · E[Yn] and so E[XY ] = E[X ]E[Y ] which implies
Cov[X,Y ] = E[XY ]− E[X ] · E[Y ] = 0.
The second statement follows from

Var[X + Y ] = Var[X ] + Var[Y ] + 2 Cov[X,Y ] .

�

Remark. If Ω is a finite set, then the covariance Cov[X,Y ] is the dot prod-
uct between the centered random variables X − E[X ] and Y − E[Y ], and
σ[X ] is the length of the vector X − E[X ] and the correlation coefficient
Corr[X,Y ] is the cosine of the angle α between X − E[X ] and Y − E[Y ]
because the dot product satisfies ~v · ~w = |~v||~w| cos(α). So, uncorrelated
random variables X,Y have the property that X − E[X ] is perpendicular
to Y − E[Y ]. This geometric interpretation explains, why lemma (2.5.7) is
called Pythagoras theorem. The statement Var[X−Y ] = Var[X ]+Var[Y ]−
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2 Cov[X,Y ] is the law of cosines c2 = a2 + b2 − 2ab cos(α) in disguise if
a, b, c are the length of the triangle width vertices 0, X −E[X ], Y −E[Y ].

For more inequalities in analysis, see the classic [29, 59]. We end this sec-
tion with a list of properties of variance and covariance:

Var[X ] ≥ 0.
Var[X ] = E[X2]− E[X ]2.
Var[λX ] = λ2Var[X ].
Var[X + Y ] = Var[X ] + Var[Y ] + 2Cov[X,Y ]. Corr[X,Y ] ∈ [0, 1].
Cov[X,Y ] = E[XY ]− E[X ]E[Y ].
Cov[X,Y ] ≤ σ[X ]σ[Y ].
Corr[X,Y ] = 1 if X − E[X ] = Y − E[Y ]

2.6 The weak law of large numbers

Consider a sequence X1, X2, . . . of random variables on a probability space
(Ω,A,P). We are interested in the asymptotic behavior of the sums Sn =
X1 + X2 + · · · + Xn for n → ∞ and especially in the convergence of the
averages Sn/n. The limiting behavior is described by ”laws of large num-
bers”. Depending on the definition of convergence, one speaks of ”weak”
and ”strong” laws of large numbers.

We first prove the weak law of large numbers. There exist different ver-
sions of this theorem since more assumptions on Xn can allow stronger
statements.

Definition. A sequence of random variables Yn converges in probability to
a random variable Y , if for all ǫ > 0,

lim
n→∞

P[|Yn − Y | ≥ ǫ] = 0 .

One calls convergence in probability also stochastic convergence.

Remark. If for some p ∈ [1,∞), ||Xn − X ||p → 0, then Xn → X in
probability since by the Chebychev-Markov inequality (2.5.4), P[|Xn−X | ≥
ǫ] ≤ ||X −Xn||p/ǫp.

Exercise. Show that if two random variables X,Y ∈ L2 have non-zero
variance and satisfy |Corr(X,Y )| = 1, then Y = aX + b for some real
numbers a, b.
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Theorem 2.6.1 (Weak law of large numbers for uncorrelated random vari-
ables). Assume Xi ∈ L2 have common expectation E[Xi] = m and satisfy
supn

1
n

∑n
i=1 Var[Xi] < ∞. If Xn are pairwise uncorrelated, then Sn

n → m
in probability.

Proof. Since Var[X + Y ] = Var[X ] + Var[Y ] + 2 · Cov[X,Y ] and Xn are
pairwise uncorrelated, we get Var[Xn +Xm] = Var[Xn] + Var[Xm] and by
induction Var[Sn] =

∑n
i=1 Var[Xn]. Using linearity, we obtain E[Sn/n] = m

and

Var[
Sn
n
] = E[

S2
n

n2
]− E[Sn]

2

n2
=

Var[Sn]

n2
=

1

n2

n
∑

i=1

Var[Xn] .

The right hand side converges to zero for n → ∞. With Chebychev’s in-
equality (2.5.5), we obtain

P[|Sn
n

−m| ≥ ǫ] ≤ Var[Sn

n ]

ǫ2
.

�

As an application in analysis, this leads to a constructive proof of a theorem
of Weierstrass which states that polynomials are dense in the space C[0, 1]
of all continuous functions on the interval [0, 1]. Unlike the abstract Weier-
strass theorem, the construction with specific polynomials is constructive
and gives explicit formulas.

Figure. Approximation of a
function f(x) by Bernstein poly-
nomials B2, B5, B10, B20, B30.
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Theorem 2.6.2 (Weierstrass theorem). For every f ∈ C[0, 1], the Bernstein
polynomials

Bn(x) =

n
∑

k=1

f(
k

n
)

(

n
k

)

xk(1 − x)n−k

converge uniformly to f . If f(x) ≥ 0, then also Bn(x) ≥ 0.

Proof. For x ∈ [0, 1], let Xn be a sequence of independent {0, 1}- valued
random variables with mean value x. In other words, we take the proba-
bility space ({0, 1 }N,A,P) defined by P[ωn = 1] = x. Since P[Sn = k] =
(

n
k

)

xk(1 − p)n−k, we can write Bn(x) = E[f(Sn

n )]. We estimate with

||f || = max0≤x≤1|f(x)|

|Bn(x) − f(x)| = |E[f(Sn
n
)]− f(x)| ≤ E[|f(Sn

n
)− f(x)|]

≤ 2||f || · P[|Sn
n

− x| ≥ δ]

+ sup
|x−y|≤δ

|f(x)− f(y)| · P[|Sn
n

− x| < δ]

≤ 2||f || · P[|Sn
n

− x| ≥ δ]

+ sup
|x−y|≤δ

|f(x)− f(y)| .

The second term in the last line is called the continuity module of f . It
converges to zero for δ → 0. By the Chebychev inequality (2.5.5) and the
proof of the weak law of large numbers, the first term can be estimated
from above by

2||f ||Var[Xi]

nδ2
,

a bound which goes to zero for n → ∞ because the variance satisfies
Var[Xi] = x(1− x) ≤ 1/4. �

In the first version of the weak law of large numbers theorem (2.6.1), we
only assumed the random variables to be uncorrelated. Under the stronger
condition of independence and a stronger conditions on the moments (X4 ∈
L1), the convergence can be accelerated:

Theorem 2.6.3 (Weak law of large numbers for independent L4 random
variables). Assume Xi ∈ L4 have common expectation E[Xi] = m and
satisfy M = supn ||X ||4 < ∞. If Xi are independent, then Sn/n → m in
probability. Even

∑∞
n=1 P[|Sn

n −m| ≥ ǫ] converges for all ǫ > 0.
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Proof. We can assume without loss of generality that m = 0. Because the
Xi are independent, we get

E[S4
n] =

n
∑

i1,i2,i3,i4=1

E[Xi1Xi2Xi3Xi4 ] .

Again by independence, a summand E[Xi1Xi2Xi3Xi4 ] is zero if an index
i = ik occurs alone, it is E[X

4
i ] if all indices are the same and E[X2

i ]E[X
2
j ], if

there are two pairwise equal indices. Since by Jensen’s inequality E[X2
i ]

2 ≤
E[X4

i ] ≤M we get
E[S4

n] ≤ nM + n(n− 1)M .

Use now the Chebychev-Markov inequality (2.5.4) with h(x) = x4 to get

P[|Sn
n
| ≥ ǫ] ≤ E[(Sn/n)

4]

ǫ4

≤ M
n+ n2

ǫ4n4
≤ 2M

1

ǫ4n2
.

�

We can weaken the moment assumption in order to deal with L1 random
variables. An other assumption needs to become stronger:

Definition. A family {Xi}i∈I of random variables is called uniformly in-
tegrable, if supi∈I E[|Xi|1|Xi|≥R] → 0 for R → ∞. A convenient notation

which we will use again in the future is E[1AX ] = E[X ;A] for X ∈ L1 and
A ∈ A. Uniform integrability can then be written as supi∈I E[Xi; |Xi| ≥
R] → 0.

Theorem 2.6.4 (Weak law for uniformly integrable, independent L1 random
variables). Assume Xi ∈ L1 are uniformly integrable. If Xi are indepen-
dent, then 1

n

∑n
i=1(Xm − E[Xm]) → 0 in L1 and therefore in probability.

Proof. Without loss of generality, we can assume that E[Xn] = 0 for all
n ∈ N, because otherwise Xn can be replaced by Yn = Xn −E[Xn]. Define
fR(t) = t1[−R,R], the random variables

X(R)
n = fR(Xn)− E[fR(Xn)], Y

(R)
n = Xn −X(R)

n

as well as the random variables

S(R)
n =

1

n

n
∑

i=1

X(R)
n , T (R)

n =
1

n

n
∑

i=1

Y (R)
n .
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We estimate, using the Minkowski and Cauchy-Schwarz inequalities

||Sn||1 ≤ ||S(R)
n ||1 + ||T (R)

n ||1
≤ ||S(R)

n ||2 + 2 sup
1≤l≤n

E[|Xl|; |Xl| ≥ R]

≤ R√
n
+ 2 sup

l∈N

E[|Xl|; |Xl| ≥ R] .

In the last step we have used the independence of the random variables and

E[X
(R)
n ] = 0 to get

||S(R)
n ||22 = E[(S(R)

n )2] =
E[(X

(R)
n )2]

n
≤ R2

n
.

The claim follows from the uniform integrability assumption
supl∈N E[|Xl|; |Xl| ≥ R] → 0 for R → ∞ �

A special case of the weak law of large numbers is the situation, where all
the random variables are IID:

Theorem 2.6.5 (Weak law of large numbers for IID L1 random variables).
Assume Xi ∈ L1 are IID random variables with mean m. Then Sn/n→ m
in L1 and so in probability.

Proof. We show that a set of IID L1 random variables is uniformly inte-
grable: given X ∈ L1, we have K · P[|X | > K] ≤ ||X ||1 so that P[|X | >
K] → 0 for K → ∞.

Because the random variables Xi are identically distributed, the probabili-
ties P[|Xi| ≥ R] = E[1|Xi

≥ R] are independent of i. Consequently any set

of IID random variables in L1 is also uniformly integrable. We can now use
theorem (2.6.4). �

Example. The random variable X(x) = x2 on [0, 1] has the expectation

m = E[X ] =
∫ 1

0 x
2 dx = 1/2. For every n, we can form the sum Sn/n =

(x21+x
2
2+ · · ·+x2n)/n. The weak law of large numbers tells us that P[|Sn−

1/2| ≥ ǫ] → 0 for n → ∞. Geometrically, this means that for every ǫ > 0,
the volume of the set of points in the n-dimensional cube for which the
distance r(x1, .., xn) =

√

x21 + · · ·+ x2n to the origin satisfies
√

n/2 − ǫ ≤
r ≤

√

n/2 + ǫ converges to 1 for n → ∞. In colloquial language, one
could rephrase this that asymptotically, as the number of dimensions to go
infinity, most of the weight of a n-dimensional cube is concentrated near a
shell of radius 1/

√
2 ∼ 0.7 times the length

√
n of the longest diagonal in

the cube.
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Exercise. Show that if X,Y ∈ L1 are independent random variables, then
XY ∈ L1. Find an example of two random variables X,Y ∈ L1 for which
XY /∈ L1.

Exercise. a) Given a sequence pn ∈ [0, 1] and a sequence Xn of IID random
variables taking values in {−1, 1} such that P[Xn = 1] = pn and P[Xn =
−1] = 1− pn. Show that

1

n

n
∑

k=1

(Xk −mk) → 0

in probability, where mk = 2pk − 1.
b) We assume the same set up like in a) but this time, the sequence pn is
dependent on a parameter. Given a sequence Xn of independent random
variables taking values in {−1, 1} such that P[Xn = 1] = pn and P[Xn =
−1] = 1− pn with pn = (1 + cos[θ+ nα])/2, where θ is a parameter. Prove
that 1

n

∑

nXn → 0 in L1 for almost all θ. You can take for granted the fact
that 1

n

∑n
k=1 pk → 1/2 for almost all real parameters θ ∈ [0, 2π]

Exercise. Prove that Xn → X in L1, then there exists of a subsequence
Yn = Xnk

satisfying Yn → X almost everywhere.

Exercise. Given a sequence of random variables Xn. Show that Xn con-
verges to X in probability if and only if

E[
|Xn −X |

1 + |Xn −X | ] → 0

for n→ ∞.

Exercise. Give an example of a sequence of random variables Xn which
converges almost everywhere, but not completely.

Exercise. Use the weak law of large numbers to verify that the volume of
an n-dimensional ball of radius 1 satisfies Vn → 0 for n → ∞. Estimate,
how fast the volume goes to 0. (See example (2.6))
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2.7 The probability distribution function

Definition. The law of a random variable X is the probability measure µ on
R defined by µ(B) = P[X−1(B)] for all B in the Borel σ-algebra of R. The
measure µ is also called the push-forward measure under the measurable
map X : Ω → R.

Definition. The distribution function of a random variable X is defined as

FX(s) = µ((−∞, s]) = P[X ≤ s] .

The distribution function is sometimes also called cumulative density func-
tion (CDF) but we do not use this name here in order not to confuse it
with the probability density function (PDF) fX(s) = F ′

X(s) for continuous
random variables.

Remark. The distribution function F is very useful. For example, if X is a
continuous random variable with distribution function F , then Y = F (X)
has the uniform distribution on [0, 1]. We can reverse this. If we want to pro-
duce random variables with a distribution function F , just take a random
variable Y with uniform distribution on [0, 1] and define X = F−1(Y ). This
random variable has the distribution function F because {X ∈ [a, b] } =
{F−1(Y ) ∈ [a, b] } = {Y ∈ F ([a, b]) } = {Y ∈ [F (a), F (b)]} = F (b)− F (a).
We see that we need only to have a random number generator which pro-
duces uniformly distributed random variables in [0, 1] to produce random
variables with a given continuous distribution.

Definition. A set of random variables is called identically distributed, if
each random variable in the set has the same distribution function. It is
called independent and identically distributed if the random variables are
independent and identically distributed. A common abbreviation for inde-
pendent identically distributed random variables is IID.

Example. Let Ω = [0, 1] be the unit interval with the Lebesgue measure µ
and let m be an integer. Define the random variable X(x) = xm. One calls
its distribution a power distribution. It is in L1 and has the expectation
E[X ] = 1/(m + 1). The distribution function of X is FX(s) = s(1/m) on
[0, 1] and FX(s) = 0 for s < 0 and FX(s) = 1 for s ≥ 1. The random
variable is continuous in the sense that it has a probability density function
fX(s) = F ′

X(s) = s1/m−1/m so that FX(s) =
∫ s

−∞ fX(t) dt.
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Figure. The distribution function
FX(s) of X(x) = xm in the case
m = 2.
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Figure. The density function
fX(s) of X(x) = xm in the case
m = 2.

Given two IID random variables X,Y with the m’th power distribution as
above, we can look at the random variables V = X+Y,W = X−Y . One can
realize V and W on the unit square Ω = [0, 1]× [0, 1] by V (x, y) = xm+ym

and W (x, y) = xm− ym. The distribution functions FV (s) = P[V ≤ s] and
FW (s) = P[V ≤ s] are the areas of the set A(s) = {(x, y) | xm + ym ≤ s }
and B(s) = {(x, y) | xm − ym ≤ s }.

Figure. FV (s) is the area of the
set A(s), shown here in the case
m = 4.

Figure. FW (s) is the area of the
set B(s), shown here in the case
m = 4.

We will later see how to compute the distribution function of a sum of in-
dependent random variables algebraically from the probability distribution
function FX . From the area interpretation, we see in this case

FV (s) =

{

∫ s1/m

0
(s− xm)1/m dx, s ∈ [0, 1] ,

1−
∫ 1

(s−1)1/m 1− (s− xm)1/m dx, s ∈ [1, 2]
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and

FW (s) =

{

∫ (s+1)1/m

0
1− (xm − s)1/m dx , s ∈ [−1, 0] ,

s1/m +
∫ 1

s1/m 1− (xm − s)1/m dx, s ∈ [0, 1]
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Figure. The function FV (s) with
density (dashed) fV (s) of the sum
of two power distributed random
variables with m = 2.
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Figure. The function FW (s) with
density (dashed) fW (s) of the dif-
ference of two power distributed
random variables with m = 2.

Exercise. a) Verify that for θ > 0 the Maxwell distribution

f(x) =
4√
π
θ3/2x2e−θx

2

is a probability distribution on R+ = [0,∞). This distribution can model
the speed distribution of molecules in thermal equilibrium.
a) Verify that for θ > 0 the Rayleigh distribution

f(x) = 2θxe−θx
2

is a probability distribution on R+ = [0,∞). This distribution can model
the speed distribution

√
X2 + Y 2 of a two dimensional wind velocity (X,Y ),

where both X,Y are normal random variables.

2.8 Convergence of random variables

In order to formulate the strong law of large numbers, we need some other
notions of convergence.
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Definition. A sequence of random variables Xn converges in probability to
a random variable X , if

P[|Xn −X | ≥ ǫ] → 0

for all ǫ > 0.

Definition. A sequence of random variables Xn converges almost every-
where or almost surely to a random variable X , if P[Xn → X ] = 1.

Definition. A sequence of Lp random variables Xn converges in Lp to a
random variable X , if

||Xn −X ||p → 0

for n→ ∞.

Definition. A sequence of random variables Xn converges fast in probabil-
ity, or completely if

∑

n

P[|Xn −X | ≥ ǫ] <∞

for all ǫ > 0.

We have so four notions of convergence of random variables Xn → X , if
the random variables are defined on the same probability space (Ω,A,P).
We will later see the two equivalent but weaker notions convergence in
distribution and weak convergence, which not necessarily assume Xn and
X to be defined on the same probability space. Lets nevertheless add these
two definitions also here. We will see later, in theorem (2.13.2) that the
following definitions are equivalent:

Definition. A sequence of random variables Xn converges in distribution,
if FXn(s) → FX(s) for all points s, where FX is continuous.

Example. Let Ωn = {1, 2, ..., n } with the uniform distribution P[{k}] =
1/n and Xn the random variable Xn(x) = x/n. Let X(x) = x on the prob-
ability space [0, 1] with probability P[[a, b)] = b− a. The random variables
Xn and X are defined on a different probability spaces but Xn converges
to X in distribution for n→ ∞.

Definition. A sequence of random variables Xn converges in law to a ran-
dom variable X , if the laws µn of Xn converge weakly to the law µ of
X .

Remark. In other words, Xn converges weakly to X if for every continuous
function f on R of compact support, one has

∫

f(x) dµn(x) →
∫

f(x) dµ(x) .
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Proposition 2.8.1. The next figure shows the relations between the different
convergence types.

0) In distribution = in law
FXn(s) → FX(s), FX cont. at s

✻

1) In probability
P[|Xn −X | ≥ ǫ] → 0, ∀ǫ > 0.

��✒ ❅❅■

2) Almost everywhere
P[Xn → X ] = 1

3) In Lp
||Xn −X ||p → 0

✻

4) Complete
∑

n P[|Xn −X | ≥ ǫ] <∞, ∀ǫ > 0

Proof. 2) ⇒ 1): Since

{Xn → X} =
⋂

k

⋃

m

⋂

n≥m
{|Xn −X | ≤ 1/k}

”almost everywhere convergence” is equivalent to

1 = P[
⋃

m

⋂

n≥m
{|Xn −X | ≤ 1

k
}] = lim

m→∞
P[

⋂

n≥m
{|Xn −X | ≤ 1

k
}]

for all k and so

0 = lim
n→∞

P[
⋃

n≥m
{|Xn −X | ≥ 1

k
}]

for all k. Therefore

P[|Xm −X | ≥ ǫ] ≤ P[
⋃

n≥m
{|Xn −X | ≥ ǫ }] → 0

for all ǫ > 0.
4) ⇒ 2): The first Borel-Cantelli lemma implies that for all ǫ > 0

P[|Xn −X | ≥ ǫ, infinitely often] = 0 .
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We get so for ǫn → 0

P[
⋃

n

|Xn−X | ≥ ǫk, infinitely often] ≤
∑

n

P[|Xn−X | ≥ ǫk, infinitely often] = 0

from which we obtain P[Xn → X ] = 1.
3) ⇒ 1): Use the Chebychev-Markov inequality (2.5.4), to get

P[|Xn −X | ≥ ǫ] ≤ E[|Xn −X |p]
ǫp

.

�

Example. Here is an example of convergence in probability but not almost
everywhere convergence. Let ([0, 1],A,P) be the Lebesgue measure space,
where A is the Borel σ-algebra on [0, 1]. Define the random variables

Xn,k = 1[k2−n,(k+1)2−n], n = 1, 2, . . . , k = 0, . . . , 2n − 1 .

By lexicographical ordering X1 = X1,1, X2 = X2,1, X3 = X2,2, X4 =
X2,3, . . . we get a sequence Xn satisfying

lim inf
n→∞

Xn(ω) = 0, lim sup
n→∞

Xn(ω) = 1

but P[|Xn,k ≥ ǫ] ≤ 2−n.

Example. And here is an example of almost everywhere but not Lp con-
vergence: the random variables

Xn = 2n1[0,2−n]

on the probability space ([0, 1],A,P) converge almost everywhere to the
constant random variable X = 0 but not in Lp because ||Xn||p = 2n(p−1)/p.

With more assumptions other implications can hold. We give two examples.

Proposition 2.8.2. Given a sequence Xn ∈ L∞ with ||Xn||∞ ≤ K for all n,
then Xn → X in probability if and only if Xn → X in L1.

Proof. (i) P[|X | ≤ K) = 1. Proof. For k ∈ N,

P[|X | > K +
1

k
] ≤ P[|X −Xn| >

1

k
] → 0, n→ ∞

so that P[|X | > K + 1
k ] = 0. Therefore

P[|X | > K] = P[
⋃

k

{|X | > K +
1

k
}] = 0 .
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(ii) Given ǫ > 0. Choose m such that for all n > m

P[|Xn −X | > ǫ

3
] <

ǫ

3K
.

Then, using (i) and the notation E[X ;A] = E[X · 1A]

E[|Xn −X |] = E[(|Xn −X |; |Xn −X | > ǫ

3
] + E[(|Xn −X |; |Xn −X | ≤ ǫ

3
]

≤ 2KP[|Xn −X | > ǫ

3
] +

ǫ

3
≤ ǫ .

�

Definition. Recall that a family C ⊂ L1 of random variables is called uni-
formly integrable, if

lim
R→∞

sup
X∈C

E[|X |1|X|>R] = E[X ; |X | > R] = 0

for all X ∈ C. The next lemma was already been used in the proof of the
weak law of large numbers for IID random variables.

Lemma 2.8.3. Given X ∈ L1 and ǫ > 0. Then, there exists K ≥ 0 with
E[|X |; |X | > K] < ǫ.

Proof. Assume we are given ǫ > 0. If X ∈ L1, we can find δ > 0 such that if
P[A] < δ, then E[|X |;A] < ǫ. Since KP[|X | > K] ≤ E[|X |], we can choose
K such that P[|X | > K] < δ. Therefore E[|X |; |X | > K] < ǫ. �

The next proposition gives a necessary and sufficient condition for L1 con-
vergence.

Proposition 2.8.4. Given a sequence random variables Xn ∈ L1 and X ∈
L1. The following is equivalent:
a) Xn converges in probability to X and {Xn}n∈N is uniformly integrable.
b) Xn converges in L1 to X .

Proof. a) ⇒ b). For any random variable X and K ≥ 0 define the bounded
variable

X(K) = X · 1{−K≤X≤K} +K · 1{X>K} −K · 1{X<−K} .
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By the uniform integrability condition and the above lemma (2.8.3) applied
to X(K) and X we can choose K such that for all n,

E[|X(K)
n −Xn|] <

ǫ

3
, E[|X(K) −X |] < ǫ

3
.

Since |X(K)
n − X(K)| ≤ |Xn − X |, we have X

(K)
n → X(K) in probability.

By the last proposition (2.8.2), we know X
(K)
n → X(K) in L1 so that for

n > m E[|X(K)
n −X(K)|] ≤ ǫ/3. Therefore, for n > m also

E[|Xn −X |] ≤ E[|Xn −X(K)
n |] + E[|X(K)

n −X(K)|] + E[|X(K) −X |] ≤ ǫ .

b) ⇒ a). We have seen already that Xn → X in probability if ||Xn−X ||1 →
0. We have to show that Xn → X in L1 implies that Xn is uniformly
integrable.
Given ǫ > 0. There exists m such that E[|Xn − X |] < ǫ/2 for n > m. By
the absolutely continuity property, we can choose δ > 0 such that P[A] < δ
implies

E[|Xn|;A] < ǫ, 1 ≤ n ≤ m,E[|X |;A] < ǫ/2 .

BecauseXn is bounded in L1, we can chooseK such thatK−1 supn E[|Xn|] <
δ which implies P[|Xn| > K] < δ. For n ≥ m, we have therefore, using the
notation E[X ;A] = E[X · 1A]

E[|Xn|; |Xn| > K] ≤ E[|X |; |Xn| > K] + E[|X −Xn|] < ǫ .

�

Exercise. a) P[supk≥n |Xk −X | > ǫ] → 0 for n → ∞ and all ǫ > 0 if and
only if Xn → X almost everywhere.
b) A sequence Xn converges almost surely if and only if

lim
n→∞

P[sup
k≥1

|Xn+k −Xn| > ǫ] = 0

for all ǫ > 0.

2.9 The strong law of large numbers

The weak law of large numbers makes a statement about the stochastic
convergence of sums

Sn
n

=
X1 + · · ·+Xn

n

of random variables Xn. The strong laws of large numbers make analog
statements about almost everywhere convergence.
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The first version of the strong law does not assume the random variables to
have the same distribution. They are assumed to have the same expectation
and have to be bounded in L4.

Theorem 2.9.1 (Strong law for independent L4-random variables). Assume
Xn are independent random variables in L4 with common expectation
E[Xn] = m and for which M = supn ||Xn||44 <∞. Then Sn/n→ m almost
everywhere.

Proof. In the proof of theorem (2.6.3), we derived

P[|Sn
n

−m| ≥ ǫ] ≤ 2M
1

ǫ4n2
.

This means that Sn/n→ m converges completely. By proposition (2.8) we
have almost everywhere convergence. �

Here is an application of the strong law:

Definition. A real number x ∈ [0, 1] is called normal to the base 10, if its
decimal expansion x = x1x2 . . . has the property that each digit appears
with the same frequency 1/10.

Corollary 2.9.2. (Normality of numbers) On the probability space
([0, 1],B,Q = dx), Lebesgue almost all numbers x are normal.

Proof. Define the random variables Xn(x) = xn, where xn is the n’th
decimal digit. We have only to verify thatXn are IID random variables. The
strong law of large numbers will assure that almost all x are normal. Let Ω =
{0, 1, . . . , 9 }N be the space of all infinite sequences ω = (ω1, ω2, ω3, . . . ).
Define on Ω the product σ-algebra A and the product probability measure
P. Define the measurable map S(ω) =

∑∞
n=1 ωk/10

k = x from Ω to [0, 1].
It produces for every sequence in Ω a real number x ∈ [0, 1]. The integers
ωk are just the decimal digits of x. The map S is measure preserving and
can be inverted on a set of measure 1 because almost all real numbers have
a unique decimal expansion.
Because Xn(x) = Xn(S(ω)) = Yn(ω) = ωn, if S(ω) = x. We see that Xn

are the same random variables than Yn. The later are by construction IID
with uniform distribution on {0, 1, . . . , 9 }. �

Remark. While almost all numbers are normal, it is difficult to decide
normality for specific real numbers. One does not know for example whether
π − 3 = 0.1415926 . . . or

√
2− 1 = 0.41421 . . . are normal.
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The strong law for IID random variables was first proven by Kolmogorov
in 1930. Only much later in 1981, it has been observed that the weaker
notion of pairwise independence is sufficient [24]:

Theorem 2.9.3 (Strong law for pairwise independent L1 random variables).
Assume Xn ∈ L1 are pairwise independent and identically distributed ran-
dom variables. Then Sn/n→ E[X1] almost everywhere.

Proof. We can assume without loss of generality that Xn ≥ 0 (because we
can split Xn = X+

n +X−
n into its positive X+

n = Xn ∨ 0 = max(Xn, 0) and
negative part X− = −X ∨ 0 = max(−X, 0). Knowing the result for X±

n

implies the result for Xn.).

Define fR(t) = t · 1[−R,R], the random variables X
(R)
n = fR(Xn) and Yn =

X
(n)
n as well as

Sn =
1

n

n
∑

i=1

Xi, Tn =
1

n

n
∑

i=1

Yi .

(i) It is enough to show that Tn − E[Tn] → 0.
Proof. Since E[Yn] → E[X1] = m, we get E[Tn] → m. Because

∑

n≥1

P[Yn 6= Xn] ≤
∑

n≥1

P[Xn ≥ n] =
∑

n≥1

P[X1 ≥ n]

=
∑

n≥1

∑

k≥n
P[Xn ∈ [k, k + 1]]

=
∑

k≥1

k · P[X1 ∈ [k, k + 1]] ≤ E[X1] <∞ ,

we get by the first Borel-Cantelli lemma that P[Yn 6= Xn, infinitely often] =
0. This means Tn − Sn → 0 almost everywhere, proving E[Sn] → m if
E[Tn] → m.
(ii) Fix a real number α > 1 and define an exponentially growing subse-
quence kn = [αn] which is the integer part of αn. Denote by µ the law of
the random variables Xn. For every ǫ > 0, we get using Chebychev inequal-
ity (2.5.5), pairwise independence for kn = [αn] and constants C which can
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vary from line to line:

∞
∑

n=1

P[|Tkn − E[Tkn ]| ≥ ǫ] ≤
∞
∑

n=1

Var[Tkn ]

ǫ2

=
∞
∑

n=1

1

ǫ2k2n

kn
∑

m=1

Var[Ym]

=
1

ǫ2

∞
∑

m=1

Var[Ym]
∑

n:kn≥m

1

k2n

≤(1) 1

ǫ2

∞
∑

m=1

Var[Ym]
C

m2

≤ C

∞
∑

m=1

1

m2
E[Y 2

m] .

In (1) we used that with kn = [αn] one has
∑

n:kn≥m k
−2
n ≤ C ·m−2. In the

last step we used that Var[Ym] = E[Y 2
m]− E[Ym]

2 ≤ E[Y 2
m].

Lets take some breath and continue, where we have just left off:

∞
∑

n=1

P[|Tkn − E[Tkn ]| ≥ ǫ] ≤ C
∞
∑

m=1

1

m2
E[Y 2

m]

≤ C
∞
∑

m=1

1

m2

m−1
∑

l=0

∫ l+1

l

x2 dµ(x)

= C

∞
∑

l=0

∞
∑

m=l+1

1

m2

∫ l+1

l

x2 dµ(x)

≤ C

∞
∑

l=0

∞
∑

m=l+1

(l + 1)

m2

∫ l+1

l

x dµ(x)

≤(2) C

∞
∑

l=0

∫ l+1

l

x dµ(x)

≤ C · E[X1] <∞ .

In (2) we used that
∑n

m=l+1m
−2 ≤ C · (l + 1)−1.

We have now proved complete (=fast stochastic) convergence. This implies
the almost everywhere convergence of Tkn − E[Tkn ] → 0.

(iii) So far, the convergence has only be verified along a subsequence kn.
Because we assumed Xn ≥ 0, the sequence Un =

∑n
i=1 Yn = nTn is mono-

tonically increasing. For n ∈ [km, km+1], we get therefore

km
km+1

Ukm
km

=
Ukm
km+1

≤ Un
n

≤ Ukm+1

km
=
km+1

km

Ukm+1

km+1
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and from limn→∞ Tkm = E[X1] almost everywhere, the statement

1

α
E[X1] ≤ lim inf

n
Tn ≤ lim sup

n
Tn ≤ αE[X1]

follows. �

Remark. The strong law of large numbers can be interpreted as a statement
about the growth of the sequence

∑n
k=1Xn. For E[X1] = 0, the convergence

1
n

∑n
k=1Xn → 0 means that for all ǫ > 0 there existsm such that for n > m

|
n
∑

k=1

Xn| ≤ ǫn .

This means that the trajectory
∑n

k=1Xn is finally contained in any arbi-
trary small cone. In other words, it grows slower than linear. The exact
description for the growth of

∑n
k=1Xn is given by the law of the iterated

logarithm of Khinchin which says that a sequence of IID random variables
Xn with E[Xn] = m and σ(Xn) = σ 6= 0 satisfies

lim sup
n→∞

Sn
Λn

= +1, lim inf
n→∞

Sn
Λn

= −1 ,

with Λn =
√

2σ2n log logn. We will prove this theorem later in a special
case in theorem (2.18.2).

Remark. The IID assumption on the random variables can not be weakened
without further restrictions. Take for example a sequence Xn of random
variables satisfying P[Xn = ±2n] = 1/2. Then E[Xn] = 0 but even Sn/n
does not converge.

Exercise. Let Xi be IID random variables in L2. Define Yk = 1
k

∑k
i=1Xi.

What can you say about Sn = 1
n

∑n
k=1 Yk?

2.10 The Birkhoff ergodic theorem

In this section we fix a probability space (Ω,A,P) and consider sequences
of random variables Xn which are defined dynamically by a map T on Ω
by

Xn(ω) = X(T n(ω)) ,

where T n(ω) = T (T (. . . T (ω))) is the n’th iterate of ω. This can include
as a special case the situation that the random variables are independent,
but it can be much more general. Similarly as martingale theory covered
later in these notes, ergodic theory is not only a generalization of classical
probability theory, it is a considerable extension of it, both by language as
by scope.
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Definition. A measurable map T : Ω → Ω from the probability space onto
itself is called measure preserving, if P[T−1(A)] = P[A] for all A ∈ A. The
map T is called ergodic if T (A) = A implies P[A] = 0 or P[A] = 1. A
measure preserving map T is called invertible, if there exists a measurable,
measure preserving inverse T−1 of T . An invertible measure preserving map
T is also called an automorphism of the probability space.

Example. Let Ω = {|z| = 1 } ⊂ C be the unit circle in the complex plane
with the measure P[Arg(z) ∈ [a, b]] = (b − a)/(2π) for 0 < a < b < 2π
and the Borel σ-algebra A. If w = e2πiα is a complex number of length 1,
then the rotation T (z) = wz defines a measure preserving transformation
on (Ω,B,P). It is invertible with inverse T−1(z) = z/w.

Example. The transformation T (z) = z2 on the same probability space as
in the previous example is also measure preserving. Note that P[T (A)] =
2P[A] but P[T−1(A)] = P[A] for all A ∈ B. The map is measure preserving
but it is not invertible.

Remark. T is ergodic if and only if for anyX ∈ L1 the conditionX(T ) = X
implies that X is constant almost everywhere.

Example. The rotation on the circle is ergodic if α is irrational. Proof:
with z = e2πix one can write a random variable X on Ω as a Fourier series
f(z) =

∑∞
n=−∞ anz

n which is the sum f0+f++f−, where f+ =
∑∞
n=1 anz

n

is analytic in |z| < 1 and f− =
∑∞

n=1 anz
−n is analytic in |z| > 1 and f0 is

constant. By doing the same decomposition for f(T (z)) =
∑∞
n=−∞ anw

nzn,
we see that f+ =

∑∞
n=1 anz

n =
∑∞

n=1 anw
nzn. But these are the Taylor

expansions of f+ = f+(T ) and so an = anw
n. Because wn 6= 1 for irrational

α, we deduce an = 0 for n ≥ 1. Similarly, one derives an = 0 for n ≤ −1.
Therefore f(z) = a0 is constant.

Example. Also the non-invertible squaring transformation T (x) = x2 on
the circle is ergodic as a Fourier argument shows again: T preserves again
the decomposition of f into three analytic functions f = f− + f0 + f+
so that f(T (z)) =

∑∞
n=−∞ anz

2n =
∑∞

n=−∞ anz
n implies

∑∞
n=1 anz

2n =
∑∞

n=1 anz
n. Comparing Taylor coefficients of this identity for analytic func-

tions shows an = 0 for odd n because the left hand side has zero Taylor
coefficients for odd powers of z. But because for even n = 2lk with odd
k, we have an = a2lk = a2l−1k = · · · = ak = 0, all coefficients ak = 0 for
k ≥ 1. Similarly, one sees ak = 0 for k ≤ −1.

Definition. Given a random variableX ∈ L and a measure preserving trans-
formation T , one obtains a sequence of random variables Xn = X(T n) ∈ L
by X(T n)(ω) = X(T nω). They all have the same distribution. Define
S0 = 0 and Sn =

∑n
k=0X(T k).
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Theorem 2.10.1 (Maximal ergodic theorem of Hopf). Given X ∈ L1 and
a measure preserving transformation T , the event A = {supn Sn > 0 }
satisfies

E[X ;A] = E[1AX ] ≥ 0 .

Proof. Define Zn = max0≤k≤n Sk and the sets An = {Zn > 0} ⊂ An+1.
Then A =

⋃

nAn. Clearly Zn ∈ L1. For 0 ≤ k ≤ n, we have Zn ≥ Sk and
so Zn(T ) ≥ Sk(T ) and hence

Zn(T ) +X ≥ Sk+1 .

By taking the maxima on both sides over 0 ≤ k ≤ n, we get

Zn(T ) +X ≥ max
1≤k≤n+1

Sk .

On An = {Zn > 0}, we can extend this to Zn(T )+X ≥ max1≤k≤n+1 Sk ≥
max0≤k≤n+1 Sk = Zn+1 ≥ Zn so that on An

X ≥ Zn − Zn(T ) .

Integration over the set An gives

E[X ;An] ≥ E[Zn;An]− E[Zn(T );An] .

Using (1) this inequality, the fact (2) that Zn = 0 on Ω\An, the (3) inequal-
ity Zn(T ) ≥ Sn(T ) ≥ 0 on An and finally that T is measure preserving (4),
leads to

E[X ;An] ≥(1) E[Zn;An]− E[Zn(T );An]

=(2) E[Zn]− E[Zn(T );An]

≥(3) E[Zn − Zn(T )] =(4) 0

for every n and so to E[X ;A] ≥ 0. �

A special case is if A is the entire set:

Corollary 2.10.2. Given X ∈ L1 and a measure preserving transformation
T . If supn Sn > 0 almost everywhere then E[X ] ≥ 0.

Theorem 2.10.3 (Birkhoff ergodic theorem, 1931). For anyX ∈ L1 the time
average

Sn
n

=
1

n

n−1
∑

i=0

X(T ix)

converges almost everywhere to a T -invariant random variable X satisfying
E[X ] = E[X]. If T is ergodic, then X is constant E[X ] almost everywhere
and Sn/n converges to E[X ].
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Proof. Define X = lim supn→∞ Sn/n, X = lim infn→∞ Sn/n . We get
X = X(T ) and X = X(T ) because

n+ 1

n

Sn+1

(n+ 1)
− Sn(T )

n
=
X

n
.

(i) X = X .
Define for β < α ∈ R the set Aα,β = {X < β < α < X }. It is T -
invariant because X,X are T -invariant as mentioned at the beginning of
the proof. Because {X < X } =

⋃

β<α,α,β∈QAα,β , it is enough to show
that P[Aα,β] = 0 for rational β < α. The rest of the proof establishes this.
In order to use the maximal ergodic theorem, we also define

Bα,β = {sup
n
(Sn − nα) > 0 , sup

n
(Sn − nβ) < 0}

= {sup
n
(Sn/n− α) > 0, sup

n
(Sn/n− β) < 0 }

⊃ {lim sup
n

(Sn/n− α) > 0, lim sup
n

(Sn/n− β) < 0 }

= {X − α > 0, X − β < 0 } = Aα,β .

Because Aα,β ⊂ Bα,β and Aα,β is T -invariant, we get from the maximal
ergodic theorem E[X − α;Aα,β ] ≥ 0 and so

E[X;Aα,β] ≥ α · P[Aα,β] .

Because Aα,β is T -invariant, we we get from (i) restricted to the system T
on Aα,β that E[X;Aα,β] = E[X ;Aα,β] and so

E[X ;Aα,β] ≥ α · P[Aα,β] . (2.5)

Replacing X,α, β with −X,−β,−α and using −X = −X shows in exactly
the same way that

E[X ;Aα,β] ≤ β · P[Aα,β ] . (2.6)

The two equations (2.5),(2.6) imply that

βP[Aα,β ] ≥ αP[Aα,β ]

which together with β < α only leave us to conclude P[Aα,β ] = 0.

(ii) X ∈ L1.
We have |Sn/n| ≤ |X |, and by (i) that Sn/n converges pointwise to X = X
and X ∈ L1. The Lebesgue’s dominated convergence theorem (2.4.3) gives
X ∈ L1.

(iii) E[X ] = E[X].
Define the T-invariant sets Bk,n = {X ∈ [ kn ,

k+1
n )} for k ∈ Z, n ≥ 1. Define

for ǫ > 0 the random variable Y = X − k
n + ǫ and call S̃n the sums where



76 Chapter 2. Limit theorems

X is replaced by Y . We know that for n large enough supn S̃n ≥ 0 on
Bk,n. When applying the maximal ergodic theorem applied to the random
variable Y on Bk,n. we get E[Y ;Bk,n] ≥ 0. Because ǫ > 0 was arbitrary,

E[X ;Bk,n] ≥
k

n
P[Bk,n] .

With this inequality

E[X,Bk,n] ≤
k + 1

n
P[Bk,n] ≤

1

n
P[Bk,n]+

k

n
P[Bk,n] ≤

1

n
P[Bk,n]+E[X ;Bk,n] .

Summing over k gives

E[X] ≤ 1

n
+ E[X ]

and because n was arbitrary, E[X] ≤ E[X ]. Doing the same with −X we
end with

E[−X] = E[−X] ≤ E[−X] ≤ E[−X ] .

�

Corollary 2.10.4. The strong law of large numbers holds for IID random
variables Xn ∈ L1.

Proof. Given a sequence of IID random variables Xn ∈ L1. Let µ be the
law of Xn. Define the probability space Ω = (RZ,A,P), where P = µZ is
the product measure. If T : Ω → Ω, T (ω)n = ωn+1 denotes the shift on Ω,
then Xn = X(T n) with with X(ω) = ω0. Since every T -invariant function
is constant almost everywhere, we must haveX = E[X ] almost everywhere,
so that Sn/n→ E[X ] almost everywhere. �

Remark. While ergodic theory is closely related to probability theory, the
notation in the two fields is often different. The reason is that the origin
of the theories are different. Ergodic theorists usually write (X,A,m) for
a probability space, not (Ω,A,P). Of course an ergodic theorists looks at
probability theory as a special case of her field and a probabilist looks at
ergodic theory as a special case of his field. An other example of different
language is also that ergodic theorists do not use the word ”random vari-
ables” X but speak of ”functions” f . This sounds different but is the same.
The two subjects can hardly be separated. Good introductions to ergodic
theory are [36, 12, 8, 78, 54, 112].
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2.11 More convergence results

We mention now some results about the almost everywhere convergence of
sums of random variables in contrast to the weak and strong laws which
were dealing with averaged sums.

Theorem 2.11.1 (Kolmogorov’s inequalities). a) Assume Xk ∈ L2 are inde-
pendent random variables. Then

P[ sup
1≤k≤n

|Sk − E[Sk]| ≥ ǫ] ≤ 1

ǫ2
Var[Sn] .

b) Assume Xk ∈ L∞ are independent random variables and ||Xn||∞ ≤ R.
Then

P[ sup
1≤k≤n

|Sk − E[Sk]| ≥ ǫ] ≥ 1− (R + ǫ)2
∑n

k=1 Var[Xk]
.

Proof. We can assume E[Xk] = 0 without loss of generality.
a) For 1 ≤ k ≤ n we have

S2
n − S2

k = (Sn − Sk)
2 + 2(Sn − Sk)Sk ≥ 2(Sn − Sk)Sk

and therefore E[S2
n;Ak] ≥ E[S2

k;Ak] for all Ak ∈ σ(X1, . . . , Xk) by the
independence of Sn − Sk and Sk. The sets A1 = {|S1| ≥ ǫ}, Ak+1 =
{|Sk+1| ≥ ǫ,max1≤l≤k |Sl| < ǫ} are mutually disjoint. We have to estimate
the probability of the events

Bn = { max
1≤k≤n

|Sk| ≥ ǫ} =

n
⋃

k=1

Ak .

We get

E[S2
n] ≥ E[S2

n;Bn] =

n
∑

k=1

E[S2
n;Ak] ≥

n
∑

k=1

E[S2
k;Ak] ≥ ǫ2

n
∑

k=1

P[Ak] = ǫ2P[Bn] .

b)

E[S2
k;Bn] = E[S2

k]− E[S2
k;B

c
n] ≥ E[S2

k]− ǫ2(1− P[Bn]) .

On Ak, |Sk−1| ≤ ǫ and |Sk| ≤ |Sk−1|+ |Xk| ≤ ǫ+R holds. We use that in
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the estimate

E[S2
n;Bn] =

n
∑

k=1

E[S2
k + (Sn − Sk)

2;Ak]

=
n
∑

k=1

E[S2
k;Ak] +

n
∑

k=1

E[(Sn − Sk)
2;Ak]

≤ (R+ ǫ)2
n
∑

k=1

P[Ak] +

n
∑

k=1

P[Ak]

n
∑

j=k+1

Var[Xj ]

≤ P[Bn]((ǫ +R)2 + E[S2
n])

so that

E[S2
n] ≤ P[Bn]((ǫ +R)2 + E[S2

n]) + ǫ2 − ǫ2P[Bn] .

and so

P[Bn] ≥
E[S2

n]− ǫ2

(ǫ +R)2 + E[Sn]− ǫ2
≥ 1− (ǫ+R)2

(ǫ +R)2 + E[S2
n]− ǫ2

≥ 1− (ǫ+R)2

E[S2
n]

.

�

Remark. The inequalities remain true in the limit n → ∞. The first in-
equality is then

P[sup
k

|Sk − E[Sk]| ≥ ǫ] ≤ 1

ǫ2

∞
∑

k=1

Var[Xk] .

Of course, the statement in a) is void, if the right hand side is infinite. In
this case, however, the inequality in b) states that supk |Sk − E[Sk]| ≥ ǫ
almost surely for every ǫ > 0.

Remark. For n = 1, Kolmogorov’s inequality reduces to Chebychev’s in-
equality (2.5.5)

Lemma 2.11.2. A sequence Xn of random variables converges almost ev-
erywhere, if and only if

lim
n→∞

P[sup
k≥1

|Xn+k −Xn| > ǫ] = 0

for all ǫ > 0.

Proof. This is an exercise. �
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Theorem 2.11.3 (Kolmogorov). Assume Xn ∈ L2 are independent and
∑∞

n=1 Var[Xn] <∞. Then

∞
∑

n=1

(Xn − E[Xn])

converges almost everywhere.

Proof. Define Yn = Xn − E[Xn] and Sn =
∑n
k=1 Yk. Given m ∈ N. Apply

Kolmogorov’s inequality to the sequence Ym+k to get

P[ sup
n≥m

|Sn − Sm| ≥ ǫ] ≤ 1

ǫ2

∞
∑

k=m+1

E[Y 2
k ] → 0

for m→ ∞. The above lemma implies that Sn(ω) converges. �

Figure. We sum up indepen-
dent random variables Xk

which take values ±1
kα with

equal probability. According to
theorem (2.11.3),the process

Sn =

n
∑

k=1

(Xk − E[Xk]) =

n
∑

k=1

Xk

converges if

∞
∑

k=1

E[X2
k ] =

∞
∑

k=1

1

k2α

converges. This is the case if α >
1/2. The picture shows some ex-
periments in the case α = 0.6.

The following theorem gives a necessary and sufficient condition that a
sum Sn =

∑n
k=1Xk converges for a sequence Xn of independent random

variables.

Definition. Given R ∈ R and a random variable X , we define the bounded
random variable

X(R) = 1|X|<RX .
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Theorem 2.11.4 (Three series theorem). Assume Xn ∈ L be independent.
Then

∑∞
n=1Xn converges almost everywhere if and only if for some R > 0

all of the following three series converge:

∞
∑

k=1

P[|Xk| > R] < ∞ , (2.7)

∞
∑

k=1

|E[X(R)
k ]| < ∞ , (2.8)

∞
∑

k=1

Var[X
(R)
k ] < ∞ . (2.9)

Proof. ”⇒” Assume first that the three series all converge. By (3) and

Kolmogorov’s theorem, we know that
∑∞

k=1(X
(R)
k − E[X

(R)
k ]) converges

almost surely. Therefore, by (2),
∑∞

k=1X
(R)
k converges almost surely. By

(1) and Borel-Cantelli, P[Xk 6= X
(R)
k infinitely often) = 0. Since for al-

most all ω, X
(R)
k (ω) = Xk(ω) for sufficiently large k and for almost all

ω,
∑∞

k=1X
(R)
k (ω) converges, we get a set of measure one, where

∑∞
k=1Xk

converges.
”⇐” Assume now that

∑∞
n=1Xn converges almost everywhere. Then Xk →

0 almost everywhere and P[|Xk| > R, infinitely often) = 0 for every R > 0.
By the second Borel-Cantelli lemma, the sum (1) converges.
The almost sure convergence of

∑∞
n=1Xn implies the almost sure conver-

gence of
∑∞
n=1X

(R)
n since P[|Xk| > R, infinitely often) = 0.

Let R > 0 be fixed. Let Yk be a sequence of independent random vari-

ables such that Yk and X
(R)
k have the same distribution and that all the

random variables X
(R)
k , Yk are independent. The almost sure convergence

of
∑∞
n=1X

(R)
n implies that of

∑∞
n=1X

(R)
n − Yk. Since E[X

(R)
k − Yk] = 0

and P[|X(R)
k − Yk| ≤ 2R) = 1, by Kolmogorov inequality b), the series

Tn =
∑n

k=1X
(R)
k − Yk satisfies for all ǫ > 0

P[sup
k≥1

|Tn+k − Tn| > ǫ] ≥ 1− (R + ǫ)2
∑∞

k=n Var[X
(R)
k − Yk]

.

Claim:
∑∞
k=1 Var[X

(R)
k − Yk] <∞.

Assume, the sum is infinite. Then the above inequality gives P[supk≥ |Tn+k−
Tn| ≥ ǫ] = 1. But this contradicts the almost sure convergence of

∑∞
k=1X

(R)
k −

Yk because the latter implies by Kolmogorov inequality that P[supk≥1 |Sn+k−
Sn| > ǫ] < 1/2 for large enough n. Having shown that

∑∞
k=1(Var[X

(R)
k −

Yk)] < ∞, we are done because then by Kolmogorov’s theorem (2.11.3),

the sum
∑∞
k=1(X

(R)
k − E[X

(R)
k ]) converges, so that (2) holds.

�
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Figure. A special case of the
three series theorem is when Xk

are uniformly bounded Xk ≤
R and have zero expectation
E[Xk] = 0. In that case, almost
everywhere convergence of Sn =
∑n

k=1Xk is equivalent to the
convergence of

∑∞
k=1 Var[Xk].

For example, in the case

Xk =

{

1
kα

− 1
kα

,

and α = 1/2, we do not have
almost everywhere convergence
of Sn, because

∑∞
k=1 Var[Xk] =

∑∞
k=1

1
k = ∞.

Definition. A real number α ∈ R is called a median of X ∈ L if P[X ≤
α] ≥ 1/2 and P[X ≥ α] ≥ 1/2. We denote by med(X) the set of medians
of X .

Remark. The median is not unique and in general different from the mean.
It is also defined for random variables for which the mean does not exist.

The median differs from the mean maximally by a multiple of the standard
deviation:

Proposition 2.11.5. (Comparing median and mean) For Y ∈ L2. Then every
α ∈ med(Y ) satisfies

|α− E[Y ]| ≤
√
2σ[Y ] .

Proof. For every β ∈ R, one has

|α− β|2
2

≤ |α− β|2 min(P[Y ≥ α],P[Y ≤ α]) ≤ E[(Y − β)2] .

Now put β = E[Y ]. �

Theorem 2.11.6 (Lévy). Given a sequence Xn ∈ L which is independent.
Choose αl,k ∈ med(Sl − Sk). Then, for all n ∈ N and all ǫ > 0

P[ max
1≤k≤n

|Sk + αn,k| ≥ ǫ] ≤ 2P[|Sn| ≥ ǫ] .
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Proof. Fix n ∈ N and ǫ > 0. The sets

A1 = {S1 + αn,1 ≥ ǫ }, Ak+1 = {max
1≤l≤k

(Sl + αn,l) < ǫ, Sk+1 + αn,k+1 ≥ ǫ }

for 1 ≤ k ≤ n are disjoint and
⋃n
k=1 Ak = {max1≤k≤n(Sk + αn,k) ≥ ǫ }.

Because {Sn ≥ ǫ } contains all the sets Ak as well as {Sn−Sk ≥ αn,k } for
1 ≤ k ≤ n, we obtain using the independence of σ(Ak) and σ(Sn − Sk)

P[Sn ≥ ǫ] ≥
n
∑

k=1

P[{Sn − Sk ≥ αn,k} ∩ Ak]

=
n
∑

k=1

P[{Sn − Sk ≥ αn,k}]P[Ak]

≥ 1

2

n
∑

k=1

P[Ak]

=
1

2
P[

n
⋃

k=1

Ak]

=
1

2
P[ max

1≤k≤n
(Sn + αn,k) ≥ ǫ] .

Applying this inequality to −Xn, we get also P[−Sm − αn,m ≥ −ǫ] ≥
2P[−Sn ≥ −ǫ] and so

P[ max
1≤k≤n

|Sk + αn,k| ≥ ǫ] ≤ 2P[|Sn| ≥ ǫ] .

�

Corollary 2.11.7. (Lévy) Given a sequence Xn ∈ L of independent random
variables. If the partial sums Sn converge in probability to S, then Sn
converges almost everywhere to S.

Proof. Take αl,k ∈ med(Sl − Sk). Since Sn converges in probability, there
exists m1 ∈ N such that |αl,k| ≤ ǫ/2 for all m1 ≤ k ≤ l. In addition,
there exists m2 ∈ N such that supn≥1 P[|Sn+m − Sm| ≥ ǫ/2] < ǫ/2 for all
m ≥ m2. For m = max{m1,m2}, we have for n ≥ 1

P[ max
1≤l≤n

|Sl+m − Sm| ≥ ǫ] ≤ P[ max
1≤l≤n

|Sl+m − Sm + αn+m,l+m| ≥ ǫ/2] .

The right hand side can be estimated by theorem (2.11.6) applied to Xn+m

with
≤ 2P[|Sn+m − Sm| ≥ ǫ

2
] < ǫ .

Now apply the convergence lemma (2.11.2). �
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Exercise. Prove the strong law of large numbers of independent but not
necessarily identically distributed random variables: Given a sequence of
independent random variables Xn ∈ L2 satisfying E[Xn] = m. If

∞
∑

k=1

Var[Xk]/k
2 <∞ ,

then Sn/n→ m almost everywhere.
Hint: Use Kolmogorov’s theorem for Yk = Xk/k.

Exercise. Let Xn be an IID sequence of random variables with uniform
distribution on [0, 1]. Prove that almost surely

∞
∑

n=1

n
∏

i=1

Xi <∞ .

Hint: Use Var[
∏

iXi] =
∏

E[X2
i ]−

∏

E[Xi]
2 and use the three series theo-

rem.

2.12 Classes of random variables

The probability distribution function FX : R → [0, 1] of a random variable
X was defined as

FX(x) = P[X ≤ x] ,

where P[X ≤ x] is a short hand notation for P[{ω ∈ Ω | X(ω) ≤ x }. With
the law µX = X∗P of X on R has FX(x) =

∫ x

−∞ dµ(x) so that F is the
anti-derivative of µ. One reason to introduce distribution functions is that
one can replace integrals on the probability space Ω by integrals on the real
line R which is more convenient.

Remark. The distribution function FX determines the law µX because the
measure ν((−∞, a]) = FX(a) on the π-system I given by the intervals
{(−∞, a]} determines a unique measure on R. Of course, the distribution
function does not determine the random variable itself. There are many
different random variables defined on different probability spaces, which
have the same distribution.
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Proposition 2.12.1. The distribution function FX of a random variable is

a) non-decreasing,
b) FX(−∞) = 0, FX(∞) = 1
c) continuous from the right: FX(x + h) → FX for h→ 0.

Furthermore, given a function F with the properties a), b), c), there exists
a random variable X on the probability space (Ω,A,P) which satisfies
FX = F .

Proof. a) follows from {X ≤ x } ⊂ {X ≤ y } for x ≤ y. b) P[{X ≤ −n}] →
0 and P[{X ≤ n}] → 1. c) FX(x + h) − FX = P[x < X ≤ x + h] → 0 for
h→ 0.
Given F , define Ω = R and A as the Borel σ-algebra on R. The measure
P[(−∞, a]] = F [a] on the π-system I defines a unique measure on (Ω,A).

�

Remark. Every Borel probability measure µ on R determines a distribution
function FX of some random variable X by

∫ x

−∞
dµ(x) = F (x) .

The proposition tells also that one can define a class of distribution func-
tions, the set of real functions F which satisfy properties a), b), c).

Example. Bertrands paradox mentioned in the introduction shows that the
choice of the distribution functions is important. In any of the three cases,
there is a distribution function f(x, y) which is radially symmetric. The
constant distribution f(x, y) = 1/π is obtained when we throw the center of
the line into the disc. The disc Ar of radius r has probability P[Ar] = r2/π.
The density in the r direction is 2r/π. The distribution f(x, y) = 1/r =

1/
√

x2 + y2 is obtained when throwing parallel lines. This will put more
weight to center. The probability P[Ar] = r/π is bigger than the area of
the disc. The radial density is 1/π. f(x, y) is the distribution when we
rotate the line around a point on the boundary. The disc Ar of radius r
has probability arcsin(r). The density in the r direction is 1/

√
1− r2.
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Figure. A plot of the radial
density function f(r) for the
three different interpretation of
the Bertrand paradox.
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Figure. A plot of the radial dis-
tribution function F (r) = P[Ar]
There are different values at
F (1/2).

So, what happens, if we really do an experiment and throw randomly lines
onto a disc? The punch line of the story is that the outcome of the ex-
periment very much depends on how the experiment will be performed. If
we would do the experiment by hand, we would probably try to throw the
center of the stick into the middle of the disc. Since we would aim to the
center, the distribution would be different from any of the three solutions
given in Bertrand’s paradox.

Definition. A distribution function F is called absolutely continuous (ac), if
there exists a Borel measurable function f satisfying F (x) =

∫ x

−∞ f(x) dx.
One calls a random variable with an absolutely continuous distribution
function a continuous random variable.

Definition. A distribution function is called pure point (pp) or atomic if
there exists a countable sequence of real numbers xn and a sequence of
positive numbers pn,

∑

n pn = 1 such that F (x) =
∑

n,xn≤x pn. One calls
a random variable with a discrete distribution function a discrete random
variable.

Definition. A distribution function F is called singular continuous (sc) if F
is continuous and if there exists a Borel set S of zero Lebesgue measure such
that µF (S) = 1. One calls a random variable with a singular continuous
distribution function a singular continuous random variable.

Remark. The definition of (ac),(pp) and (sc) distribution functions is com-
patible for the definition of (ac),(pp) and (sc) Borel measures on R. A Borel
measure is (pp), if µ(A) =

∑

x∈A µ({a}). It is continuous, if it contains no
atoms, points with positive measure. It is (ac), if there exists a measurable
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function f such that µ = f dx. It is (sc), if it is continuous and if µ(S) = 1
for some Borel set S of zero Lebesgue measure.

The following decomposition theorem shows that these three classes are
natural:

Theorem 2.12.2 (Lebesgue decomposition theorem). Every Borel measure
µ on (R,B) can be decomposed in a unique way as µ = µpp + µac + µsc,
where µpp is pure point, µsc is singular continuous and µac is absolutely
continuous with respect to the Lebesgue measure λ.

Proof. Denote by λ the Lebesgue measure on (R,B) for which λ([a, b]) =
b−a. We first show that any measure µ can be decomposed as µ = µac+µs,
where µac is absolutely continuous with respect to λ and µs is singular.

The decomposition is unique: µ = µ
(1)
ac + µ

(1)
s = µ

(2)
ac + µ

(2)
s implies that

µ
(1)
ac − µ

(2)
ac = µ

(2)
s − µ

(1)
s is both absolutely continuous and singular with

respect to µ which is only possible, if they are zero. To get the existence
of the decomposition, define c = supA∈A,λ(A)=0 µ(A). If c = 0, then µ is

absolutely continuous and we are done. If c > 0, take an increasing sequence
An ∈ B with µ(An) → c. Define A =

⋃

n≥1An and µs as µs(B) = µ(A∩B).
To split the singular part µs into a singular continuous and pure point part,

we again have uniqueness because µs = µ
(1)
sc +µ

(1)
sc = µ

(2)
pp +µ

(2)
pp implies that

ν = µ
(1)
sc − µ

(2)
sc = µ

(2)
pp − µ

(1)
pp are both singular continuous and pure point

which implies that ν = 0. To get existence, define the finite or countable
set A = {ω | µ(ω) > 0 } and define µpp(B) = µ(A ∩B). �

Definition. The Gamma function is defined for x > 0 as

Γ(x) =

∫ ∞

0

tx−1e−t dt .

It satisfies Γ(n) = (n− 1)! for n ∈ N. Define also

B(p, q) =

∫ 1

0

xp−1(1− x)q−1 dx ,

the Beta function.

Here are some examples of absolutely continuous distributions:

ac1) The normal distribution N(m,σ2) on Ω = R has the probability den-
sity function

f(x) =
1√
2πσ2

e−
(x−m)2

2σ2 .
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ac2) The Cauchy distribution on Ω = R has the probability density function

f(x) =
1

π

b

b2 + (x−m)2
.

ac3) The uniform distribution on Ω = [a, b] has the probability density
function

f(x) =
1

b− a
.

ac4) The exponential distribution λ > 0 on Ω = [0,∞) has the probability
density function

f(x) = λe−λx .

ac5) The log normal distribution on Ω = [0,∞) has the density function

f(x) =
1√

2πx2σ2
e−

(log(x)−m)2

2σ2 .

ac6) The beta distribution on Ω = [0, 1] with p > 1, q > 1 has the density

f(x) =
xp−1(1− x)q−1

B(p, q)
.

ac7) The Gamma distribution on Ω = [0,∞) with parameters α > 0, β > 0

f(x) =
xα−1βαe−x/β

Γ(α)
.

Figure. The probability density
and the CDF of the normal dis-
tribution.

Figure. The probability density
and the CDF of the Cauchy dis-
tribution.



88 Chapter 2. Limit theorems

Figure. The probability density
and the CDF of the uniform dis-
tribution.

Figure. The probability density
and the CDF of the exponential
distribution.

Definition. We use the notation
(

n
k

)

=
n!

(n− k)!k!

for the Binomial coefficient, where k! = k(k−1)(k−2) · · · 2·1 is the factorial
of k with the convention 0! = 1. For example,

(

10
3

)

=
10!

7!3!
= 10 ∗ 9 ∗ 8/6 = 120 .

Examples of discrete distributions:

pp1) The binomial distribution on Ω = {1, . . . , n }

P[X = k] =

(

n
k

)

pk(1− p)n−k

pp2) The Poisson distribution on Ω = N

P[X = k] = e−λ
λk

k!

pp3) The Discrete uniform distribution on Ω = {1, .., n }

P[X = k] =
1

n

pp4) The geometric distribution on Ω = N = {0, 1, 2, 3, . . . }

P[X = k] = p(1− p)k

pp5) The distribution of first success on Ω = N \ {0} = {1, 2, 3, . . . }

P[X = k] = p(1− p)k−1
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Figure. The probabilities and the
CDF of the binomial distribution.
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Figure. The probabilities and the
CDF of the Poisson distribution.
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Figure. The probabilities and the
CDF of the uniform distribution.
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Figure. The probabilities and the
CDF of the geometric distribution.

An example of a singular continuous distribution:

sc1) The Cantor distribution. Let C =
⋂∞
n=0 En be the Cantor set,

where E0 = [0, 1], E1 = [0, 1/3] ∪ [2/3, 1] and En is inductively
obtained by cutting away the middle third of each interval in
En−1. Define

F (x) = lim
n→∞

Fn(x)

where Fn(x) has the density (3/2)n ·1En . One can realize a random
variable with the Cantor distribution as a sum of IID random
variables as follows:

X =

∞
∑

n=1

Xn

3n
,

where Xn take values 0 and 2 with probability 1/2 each.
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Figure. The CDF of the Cantor
distribution is continuous but not
absolutely continuous. The func-
tion FX(x) is in this case called
the Cantor function. Its graph is
also called a Devils staircase
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0.2

0.4

0.6

0.8

1

Lemma 2.12.3. Given X ∈ L with law µ. For any measurable map h : R1 →
[0,∞) for which h(X) ∈ L1, one has E[h(X)] =

∫

R
h(x) dµ(x). Especially,

if µ = µac = f dx then

E[h(X)] =

∫

R

h(x)f(x) dx .

If µ = µpp, then

E[h(X)] =
∑

x,µ({x}) 6=0

h(x)µ({x}) .

Proof. If the function h is nonnegative, prove it first for X = c1x∈A, then
for step functions X ∈ S and then by the monotone convergence theorem
for any X ∈ L for which h(x) ∈ L1. If h(X) is integrable, then E[h(X)] =
E[h+(X)]− E[h−(X)]. �

Proposition 2.12.4.
Distribution Parameters Mean Variance
ac1) Normal m ∈ R, σ2 > 0 m σ2

ac2) Cauchy m ∈ R, b > 0 ”m” ∞
ac3) Uniform a < b (a+ b)/2 (b − a)2/12
ac4) Exponential λ > 0 1/λ 1/λ2

ac5) Log-Normal m ∈ R, σ2 > 0 eµ+σ
2/2 (eσ

2 − 1)e2m+σ2

ac6) Beta p, q > 0 p/(p+ q) pq
(p+q)2(p+q+1)

ac7) Gamma α, β > 0 αβ αβ2
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Proposition 2.12.5.
pp1) Bernoulli n ∈ N, p ∈ [0, 1] np np(1− p)
pp2) Poisson λ > 0 λ λ
pp3) Uniform n ∈ N (1 + n)/2 (n2 − 1)/12
pp4) Geometric p ∈ (0, 1) (1 − p)/p (1 − p)/p2

pp5) First Success p ∈ (0, 1) 1/p (1 − p)/p2

sc1) Cantor - 1/2 1/8

Proof. These are direct computations, which we do in some of the examples:
Exponential distribution:

E[Xp] =

∫ ∞

0

xpλe−λx dx =
p

λ
E[Xp−1] =

p!

αp
.

Poisson distribution:

E[X ] =

∞
∑

k=0

ke−λ
λk

k!
= λe−λ

∞
∑

k=1

λk−1

(k − 1)!
= λ .

For calculating higher moments, one can also use the probability generating
function

E[zX ] =
∞
∑

k=0

e−λ
(λz)k

k!
= e−λ(1−z)

and then differentiate this identity with respect to z at the place z = 0. We
get then

E[X ] = λ,E[X(X − 1)] = λ2,E[X3] = E[X(X − 1)(X − 2)], . . .

so that E[X2] = λ+ λ2 and Var[X ] = λ.
Geometric distribution. Differentiating the identity for the geometric series

∞
∑

k=0

xk =
1

1− x

gives
∞
∑

k=0

kxk−1 =
1

(1 − x)2
.

Therefore

E[Xp] =

∞
∑

k=0

k(1− p)kp =

∞
∑

k=0

k(1− p)kp = p

∞
∑

k=1

k(1− p)k =
p

p2
=

1

p
.

For calculating the higher moments one can proceed as in the Poisson case
or use the moment generating function.
Cantor distribution: because one can realize a random variable with the
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Cantor distribution as X =
∑∞
n=1Xn/3

n, where the IID random variables
Xn take the values 0 and 2 with probability p = 1/2 each, we have

E[X ] =

∞
∑

n=1

E[Xn]

3n
=

∞
∑

n=1

1

3n
=

1

1− 1/3
− 1 =

1

2

and

Var[X ] =

∞
∑

n=1

Var[Xn]

3n
=

∞
∑

n=1

Var[Xn]

9n
=

∞
∑

n=1

1

9n
=

1

1− 1/9
−1 =

9

8
−1 =

1

8
.

See also corollary (3.1.6) for an other computation. �

Computations can sometimes be done in an elegant way using character-
istic functions φX(t) = E[eitX ] or moment generating functions MX(t) =
E[etX ]. With the moment generating function one can get the moments
with the moment formula

E[Xn] =

∫

R

xn dµ =
dnMX

dtn
(t)|t=0 .

For the characteristic function one obtains

E[Xn] =

∫

R

xn dµ = (−i)n d
nφX
dtn

(t)|t=0 .

Example. The random variable X(x) = x has the uniform distribution

on [0, 1]. Its moment generating function is MX(t) =
∫ 1

0
etx dx = (et −

1)/t = 1+t/2!+t2/3!+ . . . . A comparison of coefficients gives the moments
E[Xm] = 1/(m+ 1), which agrees with the moment formula.

Example. A random variableX which has the Normal distributionN(m,σ2)

has the moment generating function MX(t) = etm+σ2t2/2. All the moments
can be obtained with the moment formula. For example, E[X ] =M ′

X(0) =
m, E[X2] =M ′′

X(0) = m2 + σ2.

Example. For a Poisson distributed random variable X on Ω = N =

{0, 1, 2, 3, . . . } with P[X = k] = e−λ λ
k

k! , the moment generating function is

MX(t) =

∞
∑

k=0

P[X = k]etk = eλ(1−e
t) .

Example. A random variable X on Ω = N = {0, 1, 2, 3, . . . } with the
geometric distribution P[X = k] = p(1 − p)k has the moment generating
function

MX(t) =

∞
∑

k=0

ektp(1− p)k = p

∞
∑

k=0

((1 − p)et)k =
p

1− (1 − p)et
.
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A random variable X on Ω = {1, 2, 3, . . . } with the distribution of first
success P[X = k] = p(1− p)k−1, has the moment generating function

MX(t) =
∞
∑

k=1

ektp(1− p)k−1 = etp
∞
∑

k=0

((1− p)et)k =
pet

1− (1− p)et
.

Exercise. Compute the mean and variance of the Erlang distribution

f(x) =
λktk−1

(k − 1)!
e−λx

on the positive real line Ω = [0,∞) with the help of the moment generating
function. If k is allowed to be an arbitrary positive real number, then the
Erlang distribution is called the Gamma distribution.

Definition. The kurtosis of a random variable X is defined as Kurt[X ] =
E[(X−E[X ])4]/σ[X4]. The excess kurtosis is defined as Kurt[X ]−3. Excess
kurtosis is often abbreviated by kurtosis. A distribution with positive excess
kurtosis appears more peaked, a distribution with negative excess kurtosis
appears more flat.

Exercise. Verify that if X,Y are independent random variables of the same
distribution then the kurtosis of the sum is the average of the kurtosis
Kurt[X + Y ] = (Kurt[X ] + Kurt[Y ])/2.

Exercise. Prove that for any a, b the random variable Y = aX + b has the
same kurtosis Kurt[Y ] = Kurt[X ].

Exercise. Show that the standard normal distribution has zero excess kur-
tosis. Now use the previous exercise to see that every normal distributed
random variable has zero excess kurtosis.

Lemma 2.12.6. If X,Y are independent random variables, then their mo-
ment generating functions satisfy

MX+Y (t) =MX(t) ·MY (t) .
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Proof. If X and Y are independent, then also etX and etY are independent.
Therefore,

E[et(X+Y )] = E[etXetY ] = E[etX ]E[etY ] =MX(t) ·MY (t) .

�

Example. The lemma can be used to compute the moment generating
function of the binomial distribution. A random variable X with bino-
mial distribution can be written as a sum of IID random variables Xi

taking values 0 and 1 with probability 1 − p and p. Because for n = 1,
we have MXi(t) = (1 − p) + pet, the moment generating function of X
is MX(t) = [(1 − p) + pet]n. The moment formula allows us to compute
moments E[Xn] and central moments E[(X − E[X ])n] of X . Examples:

E[X ] = np

E[X2] = np(1− p+ np)

Var[X ] = E[(X − E[X ])2] = E[X2]− E[X ]2 = np(1− p)

E[X3] = np(1 + 3(n− 1)p+ (2− 3n+ n2)p2)

E[X4] = np(1 + 7(n− 1)p+ 6(2− 3n

+n2)p2 + (−6 + 11n− 6n2 + n3)p3)

E[(X − E[X ])4] = E[X4]− 8E[X ]E[X3] + 6E[X2]2 + E[X ]4

= np(1− p)(1 + (5n− 6)p− (−6 + n+ 6n2)p2)

Example. The sum X+Y of a Poisson distributed random variable X with
parameter λ and a Poisson distributed random variable Y with parameter
µ is Poisson distributed with parameter λ+µ as can be seen by multiplying
their moment generating functions.

Definition. An interesting quantity for a random variable with a continuous
distribution with probability density fX is the Shannon entropy or simply
entropy

H(X) = −
∫

R

f(x) log(f(x)) dx .

Without restricting the class of functions, H(X) is allowed to be −∞ or
∞. The entropy allows to distinguish several distributions from others by
asking for the distribution with the largest entropy. For example, among all
distribution functions on the positive real line [0,∞) with fixed expectation
m = 1/λ, the exponential distribution λe−λ is the one with maximal en-
tropy. We will return to these interesting entropy extremization questions
later.

Example. Let us compute the entropy of the random variable X(x) = xm

on ([0, 1],B, dx). We have seen earlier that the density of X is fX(x) =
x1/m−1/m so that

H(X) = −
∫ 1

0

(x1/m−1/m) log(x1/m−1/m) dx .
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To compute this integral, note first that f(x) = xa log(xa) = axa log(x) has

the antiderivative ax1+a((1+a) log(x)−1)/(1+a)2 so that
∫ 1

0 x
a log(xa) dx =

−a/(1+a2) and H(X) = (1−m+log(m)). Because d
dmH(Xm) = (1/m)−1

and d2

dm2H(Xm) = −1/m2, the entropy has its maximum at m = 1, where
the density is uniform. The entropy decreases for m→ ∞. Among all ran-
dom variables X(x) = xm, the random variable X(x) = x has maximal
entropy.

Figure. The entropy of the ran-
dom variables X(x) = xm on
[0, 1] as a function of m. The
maximum is attained for m = 1,
which is the uniform distribution

1 2 3 4 5
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2.13 Weak convergence

Definition. Denote by Cb(R) the vector space of bounded continuous func-
tions on R. This means that ||f ||∞ = supx∈R |f(x)| < ∞ for every f ∈
Cb(R). A sequence of Borel probability measures µn on R converges weakly
to a probability measure µ on R if for every f ∈ Cb(R) one has

∫

R

f dµn →
∫

R

f dµ

in the limit n→ ∞.

Remark. For weak convergence, it is enough to test
∫

R
f dµn →

∫

R
f dµ

for a dense set in Cb(R). This dense set can consist of the space P (R) of
polynomials or the space C∞

b (R) of bounded, smooth functions.

An important fact is that a sequence of random variables Xn converges
in distribution to X if and only if E[h(Xn)] → E[h(X)] for all smooth
functions h on the real line. This will be used the proof of the central limit
theorem.

Weak convergence defines a topology on the set M1(R) of all Borel proba-
bility measures on R. Similarly, one has a topology for M1([a, b]).
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Lemma 2.13.1. The set M1(I) of all probability measures on an interval
I = [a, b] is a compact topological space.

Proof. We need to show that any sequence µn of probability measures on
I has an accumulation point. The set of functions fk(x) = xk on [a, b] span
all polynomials and so a dense set in Cb([a, b]). The sequence µn converges

to µ if and only if all the moments
∫ b

a
xk dµn converge for n→ ∞ and for

all k ∈ N. In other words, the compactness ofM1([a, b]) is equivalent to the
compactness of the product space IN with the product topology, which is
Tychonovs theorem. �

Remark. In functional analysis, a more general theorem called Banach-
Alaoglu theorem is known: a closed and bounded set in the dual space X∗

of a Banach spaceX is compact with respect to the weak-* topology, where
the functionals µn converge to µ if and only if µn(f) converges to µ(f) for
all f ∈ X . In the present case, X = Cb[a, b] and the dual space X∗ is the
space of all signed measures on [a, b] (see [7]).

Remark. The compactness of probability measures can also be seen by
looking at the distribution functions Fµ(s) = µ((−∞, s]). Given a sequence
Fn of monotonically increasing functions, there is a subsequence Fnk

which
converges to an other monotonically increasing function F , which is again
a distribution function. This fact generalizes to distribution functions on
the line where the limiting function F is still a right-continuous and non-
decreasing function Helly’s selection theorem but the function F does not
need to be a distribution function any more, if the interval [a, b] is replaced
by the real line R.

Definition. A sequence of random variables Xn converges weakly or in law
to a random variable X , if the laws µXn of Xn converge weakly to the law
µX of X .

Definition. Given a distribution function F , we denote by Cont(F ) the set
of continuity points of F .

Remark. Because F is nondecreasing and takes values in [0, 1], the only
possible discontinuity is a jump discontinuity. They happen at points ti,
where ai = µ({ti}) > 0. There can be only countably many such disconti-
nuities, because for every rational number p/q > 0, there are only finitely
many ai with ai > p/q because

∑

i ai ≤ 1.

Definition. We say that a sequence of random variables Xn converges in
distribution to a random variable X , if FXn(x) → FX(x) point wise for all
x ∈ Cont(F ).
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Theorem 2.13.2 (Weak convergence = convergence in distribution). A se-
quence Xn of random variables converges in law to a random variable X if
and only if Xn converges in distribution to X .

Proof. (i) Assume we have convergence in law. We want to show that we
have convergence in distribution. Given s ∈ Cont(f) and δ > 0. Define a
continuous function 1(−∞,s] ≤ f ≤ 1(−∞,s+δ]. Then

Fn(s) =

∫

R

1(−∞,s] dµn ≤
∫

R

f dµn ≤
∫

R

1(−∞,s+δ] dµn = Fn(s+ δ) .

This gives

lim sup
n→∞

Fn(s) ≤ lim
n→∞

∫

f dµn =

∫

f dµ ≤ F (s+ δ) .

Similarly, we obtain with a function 1(−∞,s−δ] ≤ f ≤ 1(−∞,s]

lim inf
n→∞

Fn(s) ≥ lim
n→∞

∫

f dµn =

∫

f dµ ≥ F (s− δ) .

Since F is continuous at x we have for δ → 0:

F (s) = lim
δ→0

F (s− δ) ≤ lim inf
n→∞

Fn(s) ≤ lim sup
n→∞

Fn(s) ≤ F (s) .

That is we have established convergence in distribution.
(ii) Assume now we have no convergence in law. There exists then a con-
tinuous function f so that

∫

f dµn to
∫

f dµ fails. That is, there is a
subsequence and ǫ > 0 such that |

∫

f dµnk
−
∫

f dµ| ≥ ǫ > 0. There exists
a compact interval I such that |

∫

I f dµnk
−

∫

I f dµ| ≥ ǫ/2 > 0 and we
can assume that µnk

and µ have support on I. The set of all probability
measures on I is compact in the weak topology. Therefore, a subsequence
of µnk

converges weakly to a measure ν and |ν(f) − µ(f)| ≥ ǫ/2. De-
fine the π-system I of all intervals {(−∞, s] | s continuity point of F }.
We have µn((−∞, s]) = FXn(s) → FX(s) = µ(−∞, s]). Using (i) we see
µnk

((−∞, s]) → ν(−∞, s] also, so that µ and ν agree on the π system I. If
µ and ν agree on I, they agree on the π-system of all intervals {(−∞, s]}.
By lemma (2.1.4), we know that µ = ν on the Borel σ-algebra and so µ = ν.
This contradicts |ν(f) − µ(f)| ≥ ǫ/2. So, the initial assumption of having
no convergence in law was wrong. �

2.14 The central limit theorem

Definition. For any random variable X with non-zero variance, we denote
by

X∗ =
(X − E[X ])

σ(X)
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the normalized random variable, which has mean E[X∗] = 0 and variance
σ(X∗) =

√

Var[X∗] = 1. Given a sequence of random variables Xk, we
again use the notation Sn =

∑n
k=1Xk.

Theorem 2.14.1 (Central limit theorem for independent L3 random vari-
ables). Assume Xi ∈ L3 are independent and satisfy

M = sup
i

||Xi||3 <∞, δ = lim inf
n→∞

1

n

n
∑

i=1

Var[Xi] > 0 .

Then S∗
n converges in distribution to a random variable with standard

normal distribution N(0, 1):

lim
n→∞

P[S∗
n ≤ x] =

1√
2π

∫ x

−∞
e−y

2/2 dy, ∀x ∈ R .

Figure. The probabil-
ity density function
fS∗

1
of the random

variable X(x) = x on
[−1, 1].

Figure. The probabil-
ity density function
fS∗

2
of the random

variable X(x) = x on
[−1, 1].

Figure. The probabil-
ity density function
fS∗

3
of the random

variable X(x) = x on
[−1, 1].

Lemma 2.14.2. A N(0, σ2) distributed random variable X satisfies

E[|X |p] = 1√
π
2p/2σpΓ(

1

2
(p+ 1)) .

Especially E[|X |3] =
√

8
πσ

3.
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Proof. With the density function f(x) = (2πσ2)−1/2e−
x2

2σ2 , we have E[|X |p] =
2
∫∞
0
xpf(x) dx which is after a substitution z = x2/(2σ2) equal to

1√
π
2p/2σp

∫ ∞

0

x
1
2 (p+1)−1e−x dx .

The integral to the right is by definition equal to Γ(12 (p+ 1)). �

After this preliminary computation, we turn to the proof of the central
limit theorem.

Proof. Define for fixed n ≥ 1 the random variables

Yi =
(Xi − E[Xi])

σ(Sn)
, 1 ≤ i ≤ n

so that S∗
n =

∑n
i=1 Yi. Define N(0, σ2)-distributed random variables Ỹi

having the property that the set of random variables

{Y1, . . . , Yn, Ỹ1, . . . Ỹn }

are independent. The distribution of S̃n =
∑n
i=1 Ỹi is just the normal distri-

bution N(0, 1). In order to show the theorem, we have to prove E[f(S∗
n)]−

E[f(S̃n)] → 0 for any f ∈ Cb(R). It is enough to verify it for smooth f of
compact support. Define

Zk = Ỹ1 + . . . Ỹk−1 + Yk+1 + · · ·+ Yn .

Note that Z1 + Y1 = S∗
n and Zn + Ỹn = S̃n. Using first a telescopic sum

and then Taylor’s theorem, we can write

f(S∗
n)− f(S̃n) =

n
∑

k=1

[f(Zk + Yk)− f(Zk + Ỹk)]

=

n
∑

k=1

[f ′(Zk)(Yk − Ỹk)] +

n
∑

k=1

[
1

2
f ′′(Zk)(Y

2
k − Ỹ 2

k )]

+

n
∑

k=1

[R(Zk, Yk) +R(Zk, Ỹk)]

with a Taylor rest term R(Z, Y ), which can depend on f . We get therefore

|E[f(S∗
n)]− E[f(S̃n)]| ≤

n
∑

k=1

E[|R(Zk, Yk)|] + E[|R(Zk, Ỹk)|] . (2.10)

Because Ỹk are N(0, σ2)-distributed, we get by lemma (2.14.2) and the
Jensen inequality (2.5.1)

E[|Ỹk|3] =
√

8

π
σ3 =

√

8

π
E[|Yk|2]3/2 ≤

√

8

π
E[|Yk|3] .
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Taylor’s theorem gives |R(Zk, Yk)| ≤ const · |Yk|3 so that

n
∑

k=1

E[|R(Zk, Yk)|] + E[|R(Zk, Ỹk)|] ≤ const ·
n
∑

k=1

E[|Yk|3]

≤ const · n · sup
i

||Xi||3/Var[Sn]3/2

= const · supi ||Xi||3
(Var[Sn]/n)3/2

· 1√
n

≤ M

δ3/2
1√
n
=
C(f)√
n

→ 0 .

We have seen that for every smooth f ∈ Cb(R) there exists a constant C(f)
such that |E[f(S∗

n)]− E[f(S̃n)]| ≤ C(f)/
√
n. �

if we assume the Xi to be identically distributed, we can relax the condition
Xi ∈ L3 to Xi ∈ L2:

Theorem 2.14.3 (Central limit theorem for IID L2 random variables). If
Xi ∈ L2 are IID and satisfy 0 < Var[Xi], then S∗

n converges weakly to a
random variable with standard normal distribution N(0, 1).

Proof. The previous proof can be modified. We change the estimation of
Taylor |R(z, y)| ≤ δ(y) · y2 with δ(y) → 0 for |y| → 0. Using the IID
property we can estimate the rest term

R =

n
∑

k=1

E[|R(Zk, Yk)|] + E[|R(Zk, Ỹk)|]

as follows

R ≤
n
∑

k=1

E[δ(Yk)Y
2
k ] + E[δ(Ỹk)Ỹ

2
k ]

= n · E[δ( X1

σ
√
n
)
X2

1

σ2n
] + n · E[δ( X̃1

σ
√
n
)
X̃2

1

σ2n
]

= E[δ(
X1

σ
√
n
)
X2

1

σ2
] + E[δ(

X̃1

σ
√
n
)
X̃2

1

σ2
] .

Both terms converge to zero for n → ∞ because of the dominated con-

vergence theorem (2.4.3): for the first term for example, δ( X1

σ
√
n
)
X2

1

σ2 → 0

pointwise almost everywhere, because δ(y) → 0 and X1 ∈ L2. Note also
that the function δ which depends on the test function f in the proof of
the previous result is bounded so that the roof function in the dominated
convergence theorem exists. It is CX2

1 for some constant C. By (2.4.3) the
expectation goes to zero as n→ ∞. �
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The central limit theorem can be interpreted as a solution to a fixed point
problem:

Definition. Let P0,1 be the space of probability measure µ on (R,BR) which
have the properties that

∫

R
x2 dµ(x) = 1,

∫

R
x dµ(x) = 0. Define the map

Tµ(A) =

∫

R

∫

R

1A(
x+ y√

2
)dµ(x) dµ(y)

on P0,1.

Corollary 2.14.4. The only attractive fixed point of T on P0,1 is the law of
the standard normal distribution.

Proof. If µ is the law of a random variables X,Y with Var[X ] = Var[Y ] = 1
and E[X ] = E[Y ] = 0. Then T (µ) is the law of the normalized random
variable (X + Y )/

√
2 because the independent random variables X,Y can

be realized on the probability space (R2,B, µ× µ) as coordinate functions
X((x, y)) = x, Y ((x, y)) = y. Then T (µ) is obviously the law of (X+Y )/

√
2.

Now use that T n(X) = (S2n)
∗ converges in distribution to N(0, 1). �

For independent 0 − 1 experiments with win probability p ∈ (0, 1), the
central limit theorem is quite old. In this case

lim
n→∞

P[
(Sn − np)
√

np(1− p)
≤ x] =

1√
2π

∫ x

−∞
e−y

2/2 dy

as had been shown by de Moivre in 1730 in the case p = 1/2 and for general
p ∈ (0, 1) by Laplace in 1812. It is a direct consequence of the central limit
theorem:

Corollary 2.14.5. (DeMoivre-Laplace limit theorem) The distribution ofX∗
n

converges to the normal distribution if Xn has the binomial distribution
B(n, p).

For more general versions of the central limit theorem, see [109].

The next limit theorem for discrete random variables illustrates, why the
Poisson distribution on N is natural. Denote by B(n, p) the binomial dis-
tribution on {1, . . . , n } and with Pα the Poisson distribution on N \ {0 }.
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Theorem 2.14.6 (Poisson limit theorem). Let Xn be a B(n, pn)-distributed
and suppose npn → α. Then Xn converges in distribution to a random
variable X with Poisson distribution with parameter α.

Proof. We have to show that P[Xn = k] → P[X = k] for each fixed k ∈ N.

P[Xn = k] =

(

n
k

)

pkn(1− pn)
n−k

=
n(n− 1)(n− 2) . . . (n− k + 1)

k!
pkn(1− pn)

n−k

∼ 1

k!
(npn)

k(1− npn
n

)n−k → αk

k!
e−α .

�
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Figure. The binomial
distribution B(2, 1/2)
has its support on
{0, 1, 2 }.
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Figure. The binomial
distribution B(5, 1/5)
has its support on
{0, 1, 2, 3, 4, 5 }.
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Figure. The Pois-
son distribution
with α = 1 on
N = {0, 1, 2, 3, . . . }.

Exercise. It is custom to use the notation

Φ(s) = FX(s) =
1√
2π

∫ s

−∞
e−y

2/2 dy

for the distribution function of a random variableX which has the standard
normal distribution N(0, 1). Given a sequence of IID random variables Xn

with this distribution.
a) Justify that one can estimate for large n probabilities

P[a ≤ S∗
n ≤ b] ∼ Φ(b)− Φ(a) .
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b) Assume Xi are all uniformly distributed random variables in [0, 1].
Estimate for large n

P[|Sn/n− 0.5| ≥ ǫ]

in terms of Φ, ǫ and n.
c) Compare the result in b) with the estimate obtained in the weak law of
large numbers.

Exercise. Define for λ > 0 the transformation

Tλ(µ)(A) =

∫

R

∫

R

1A(
x+ y

λ
) dµ(x) dµ(y)

in P =M1(R), the set of all Borel probability measures on R. For which λ
can you describe the limit?

2.15 Entropy of distributions

Denote by ν a (not necessarily finite) measure on a measure space (Ω,A).
An example is the Lebesgue measure on R or the counting measure on N.
Note that the measure is defined only on a δ-subring of A since we did not
assume that ν is finite.

Definition. A probability measure µ on R is called ν absolutely continuous,
if there exists a density f ∈ L1(ν) such that µ = fν. If µ is ν-absolutely
continuous, one writes µ ≪ ν. Call P(ν) the set of all ν absolutely con-
tinuous probability measures. In other words, the set P(ν) is the set of
functions f ∈ L1(ν) satisfying f ≥ 0 and

∫

f(x) dν(x) = 1.

Remark. The fact that µ≪ ν defined earlier is equivalent to this is called
the Radon-Nykodym theorem (3.1.1). The function f is therefore called the
Radon-Nykodym derivative of µ with respect to ν.

Example. If ν is the counting measure N = {0, 1, 2, . . . } and ν is the
law of the geometric distribution with parameter p, then the density is
f(k) = p(1− p)k.

Example. If ν is the Lebesgue measure on (−∞,∞) and µ is the law of

the standard normal distribution, then the density is f(x) = e−x
2/2/

√
2π.

There is a multi-variable calculus trick using polar coordinates, which im-
mediately shows that f is a density:

∫ ∫

R2

e−(x2+y2)/2 dxdy =

∫ ∞

0

∫ 2π

0

e−r
2/2 rdθdr = 2π .
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Definition. For any probability measure µ ∈ P(ν) define the entropy

H(µ) =

∫

Ω

−f(ω) log(f(ω)) dν(ω) .

It generalizes the earlier defined Shannon entropy, where the assumption
had been dν = dx.

Example. Let ν be the counting measure on a countable set Ω, where A
is the σ-algebra of all subsets of Ω and let the measure ν is defined on the
δ-ring of all finite subsets of Ω. In this case,

H(µ) =
∑

ω∈Ω

−f(ω) log(f(ω)) .

For example, for Ω = N = {0, 1, 2, 3, . . . } with counting measure ν, the
geometric distribution P[{k}] = p(1− p)k has the entropy

∞
∑

k=0

−(1− p)kp log((1− p)kp) = log(
1− p

p
)− log(1− p)

p
.

Example. Let ν be the Lebesgue measure on R. If µ = fdx has a density
function f , we have

H(µ) =

∫

R

−f(x) log(f(x)) dx .

For example, for the standard normal distribution µ with probability den-
sity function f(x) = 1√

2π
e−x

2/2, the entropy is H(f) = (1 + log(2π))/2.

Example. If ν is the Lebesgue measure dx on Ω = R+ = [0,∞). A random
variable on Ω with probability density function f(x) = λe−λx is called the
exponential distribution. It has the mean 1/λ. The entropy of this distri-
bution is (log(λ)− 1)/λ.

Example. If ν is a probability measure on R, f a density and

A = {A1, . . . , An }
is a partition on R. For the step function

f̃ =
n
∑

i=1

(

∫

Ai

f dx)1Ai ∈ S(ν) ,

the entropy H(f̃ ν) is equal to

H({Ai}) =
∑

i

−ν(Ai) log(ν(Ai))

which is called the entropy of the partition {Ai }. The approximation of
the density f by a step functions f̃ is called coarse graining and the entropy
of f̃ is called the coarse grained entropy. It has first been considered by
Gibbs in 1902.
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Remark. In ergodic theory, where one studies measure preserving trans-
formations T of probability spaces, one is interested in the growth rate of
the entropy of a partition generated by A, T (A), .., T n(A). This leads to
the notion of an entropy of a measure preserving transformation called
Kolmogorov-Sinai entropy.

Interpretation. Assume that Ω is finite and that ν the counting measure
and µ({ω}) = f(ω) the probability distribution of random variable de-
scribing the measurement of an experiment. If the event {ω} happens, then
− log(f(ω)) is a measure for the information or ”surprise” that the event
happens. The averaged information or surprise is

H(µ) =
∑

ω

−f(ω) log(f(ω)) .

If f takes only the values 0 or 1, which means that µ is deterministic,
then H(µ) = 0. There is no surprise then and the measurements show a
unique value. On the other hand, if f is the uniform distribution on Ω, then
H(µ) = log(|Ω|) is larger than 0 if Ω has more than one element. We will
see in a moment that the uniform distribution is the maximal entropy.

Definition. Given two probability measures µ = fν and µ̃ = f̃ ν which are
both absolutely continuous with respect to ν. Define the relative entropy

H(µ̃|µ) =
∫

Ω

f̃(ω) log(
f̃(ω)

f(ω)
) dν(x) ∈ [0,∞] .

It is the expectation Eµ̃[l] of the Likelihood coefficient l = log( f̃(x)f(x) ). The

negative relative entropy −H(µ̃|µ) is also called the conditional entropy.
We write also H(f |f̃) instead of H(µ̃|µ).

Theorem 2.15.1 (Gibbs inequality). 0 ≤ H(µ̃|µ) ≤ +∞ and H(µ̃|µ) = 0 if
and only if µ = µ̃.

Proof. We can assumeH(µ̃|µ) <∞. The function u(x) = x log(x) is convex
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on R+ = [0,∞) and satisfies u(x) ≥ x− 1.

H(µ̃|µ) =

∫

Ω

f̃(ω) log(
f̃(ω)

f(ω)
) dν(ω)

=

∫

Ω

f̃(ω)
f̃(ω)

f(ω)
log(

f̃(ω)

f(ω)
) dν(ω)

=

∫

Ω

f̃(ω)u(
f(ω)

f̃(ω)
) dν(ω)

≥
∫

Ω

f̃(ω)(
f(ω)

f̃(ω)
− 1) dν(ω)

=

∫

Ω

f(ω)− f̃(ω) dν(ω) = 1− 1 = 0 .

If µ = µ̃, then f = f̃ almost everywhere then f(ω)

f̃(ω)
= 1 almost everywhere

and H(µ̃|µ) = 0. On the other hand, if H(µ̃|µ) = 0, then by the Jensen
inequality (2.5.1)

0 = Eµ̃[u(
f̃

f
)] ≥ u(Eµ̃[

f̃

f
]) = u(1) = 0 .

Therefore, Eµ̃[u(
f̃
f )] = u(Eµ̃[

f̃
f ]). The strict convexity of u implies that f̃

f

must be a constant almost everywhere. Since both f and f̃ are densities,
the equality f = f̃ must be true almost everywhere. �

Remark. The relative entropy can be used to measure the distance between
two distributions. It is not a metric although. The relative entropy is also
known under the name Kullback-Leibler divergence or Kullback-Leibler
metric, if ν = dx [87].
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Theorem 2.15.2 (Distributions with maximal entropy). The following dis-
tributions have maximal entropy.
a) If Ω is finite with counting measure ν. The uniform distribution on Ω
has maximal entropy among all distributions on Ω. It is unique with this
property.
b) Ω = N with counting measure ν. The geometric distribution with
parameter p = c−1 has maximal entropy among all distributions on
N = {0, 1, 2, 3, . . . } with fixed mean c. It is unique with this property.
c) Ω = {0, 1}N with counting measure ν. The product distribution ηN ,
where η(1) = p, η(0) = 1− p with p = c/N has maximal entropy among all

distributions satisfying E[SN ] = c, where SN (ω) =
∑N

i=1 ωi. It is unique
with this property.
d) Ω = [0,∞) with Lebesgue measure ν. The exponential distribution with
density f(x) = λe−λx with parameter λ on Ω has the maximal entropy
among all distributions with fixed mean c = 1/λ. It is unique with this
property.
e) Ω = R with Lebesgue measure ν. The normal distribution N(m,σ2)
has maximal entropy among all distributions with fixed mean m and fixed
variance σ2. It is unique with this property.
f) Finite measures. Let (Ω,A) be an arbitrary measure space for which
0 < ν(Ω) <∞. Then the measure ν with uniform distribution f = 1/ν(Ω)
has maximal entropy among all other measures on Ω. It is unique with this
property.

Proof. Let µ = fν be the measure of the distribution from which we want
to prove maximal entropy and let µ̃ = f̃ν be any other measure. The aim
is to show H(µ̃|µ) = H(µ) −H(µ̃) which implies the maximality since by
the Gibbs inequality lemma (2.15.1) H(µ̃|µ) ≥ 0.
In general,

H(µ̃|µ) = −H(µ̃)−
∫

Ω

f̃(ω) log(f(ω)) dν

so that in each case, we have to show

H(µ) = −
∫

Ω

f̃(ω) log(f(ω)) dν . (2.11)

With

H(µ̃|µ) = H(µ)−H(µ̃)

we also have uniqueness: if two measures µ̃, µ have maximal entropy, then
H(µ̃|µ) = 0 so that by the Gibbs inequality lemma (2.15.1) µ = µ̃.

a) The density f = 1/|Ω| is constant. Therefore H(µ) = log(|Ω|) and equa-
tion (2.11) holds.
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b) The geometric distribution on N = {0, 1, 2, . . . } satisfies P[{k}] = f(k) =
p(1− p)k. We have computed the entropy before as

log(1− p)/p)− (log(1− p))/p = − log(p)− (1− p)

p
log(1− p) .

c) The discrete density is f(ω) = pSN (1− p)N−SN so that

log(f(k)) = SN log(p) + (N − SN ) log(1 − p)

and
∑

k

f̃(k) log(f(k)) = E[SN ] log(p) + (N − E[SN ]) log(1− p) .

The claim follows since we fixed E[SN ].

d) The density is f(x) = αe−αx, so that log(f(x)) = log(α) − αx. The
claim follows since we fixed E[X ] =

∫

x dµ̃(x) was assumed to be fixed for
all distributions.

e) For the normal distribution log(f(x)) = a + b(x − m)2 with two real
number a, b depending only on m and σ. The claim follows since we fixed
Var[X ] = E[(x−m)2] for all distributions.

f) The density f = 1 is constant. Therefore H(µ) = 0 which is also on the
right hand side of equation (2.11). �

Remark. This result has relations to the foundations of thermodynamics,
where one considers the phase space of N particles moving in a finite region
in Euclidean space. The energy surface is then a compact surface Ω and the
motion on this surface leaves a measure ν invariant which is induced from
the flow invariant Lebesgue measure. The measure ν is called the micro-
canonical ensemble. According to f) in the above, it is the measure which
maximizes entropy.

Remark. Let us try to get the maximal distribution using calculus of vari-
ations. In order to find the maximum of the functional

H(f) = −
∫

f log(f) dν

on L1(ν) under the constraints

F (f) =

∫

Ω

f dν = 1, G(f) =

∫

Ω

Xf dν = c ,

we have to find the critical points of H̃ = H − λF − µG In infinite dimen-
sions, constrained critical points are points, where the Lagrange equations

∂

∂f
H(f) = λ

∂

∂f
F (f) + µ

∂

∂f
G(f)

F (f) = 1

G(f) = c
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are satisfied. The derivative ∂/∂f is the functional derivative and λ, µ are
the Lagrange multipliers. We find (f, λ, ν) as a solution of the system of
equations

−1− log(f(x)) = λ+ µx,
∫

Ω

f(x) dν(x) = 1,

∫

Ω

xf(x) dν(x) = c

by solving the first equation for f :

f = e−λ−µx+1

∫

e−λ−µx+1 dν(x) = 1

∫

xe−λ−µx+1 dν(x) = c

dividing the third equation by the second, so that we can get µ from the
equation

∫

xe−µxx dν(x) = c
∫

e−µ(x) dν(x) and λ from the third equation
e1+λ =

∫

e−µx dν(x). This variational approach produces critical points of
the entropy. Because the Hessian D2(H) = −1/f is negative definite, it is
also negative definite when restricted to the surface in L1 determined by
the restrictions F = 1, G = c. This indicates that we have found a global
maximum.

Example. For Ω = R, X(x) = x2, we get the normal distribution N(0, 1).

Example. For Ω = N, X(n) = ǫn, we get f(n) = e−ǫnλ1/Z(f) with Z(f) =
∑

n e
−ǫnλ1 and where λ1 is determined by

∑

n ǫne
−ǫnλ1 = c. This is called

the discrete Maxwell-Boltzmann distribution. In physics, one writes λ−1 =
kT with the Boltzmann constant k, determining T , the temperature.

Here is a dictionary matching some notions in probability theory with cor-
responding terms in statistical physics. The statistical physics jargon is
often more intuitive.

Probability theory Statistical mechanics

Set Ω Phase space
Measure space Thermodynamic system
Random variable Observable (for example energy)
Probability density Thermodynamic state
Entropy Boltzmann-Gibbs entropy
Densities of maximal entropy Thermodynamic equilibria
Central limit theorem Maximal entropy principle

Distributions, which maximize the entropy possibly under some constraint
are mathematically natural because they are critical points of a variational
principle. Physically, they are natural, because nature prefers them. From
the statistical mechanical point of view, the extremal properties of entropy
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offer insight into thermodynamics, where large systems are modeled with
statistical methods. Thermodyanamic equilibria often extremize variational
problems in a given set of measures.

Definition. Given a measure space (Ω,A) with a not necessarily finite
measure ν and a random variable X ∈ L. Given f ∈ L1 leading to the
probability measure µ = fν. Consider the moment generating function
Z(λ) = Eµ[e

λX ] and define the interval Λ = {λ ∈ R | Z(λ) < ∞ } in R.
For every λ ∈ Λ we can define a new probability measure

µλ = fλν =
eλX

Z(λ)
µ

on Ω. The set
{µλ | λ ∈ Λ }

of measures on (Ω,A) is called the exponential family defined by ν and X .

Theorem 2.15.3 (Minimizing relative entropy). For all probability measures
µ̃ which are absolutely continuous with respect to ν, we have for all λ ∈ Λ

H(µ̃|µ)− λEµ̃[X ] ≥ − logZ(λ) .

The minimum − logZ(λ) is obtained for µλ.

Proof. For every µ̃ = f̃ ν, we have

H(µ̃|µ) =

∫

Ω

f̃ log(
f̃

f̃λ
· f̃λ
f
) dν

= H(µ̃|µλ) + (− log(Z(λ)) + λEµ̃[X ]) .

For µ̃ = µλ, we have

H(µλ|µ) = − log(Z(λ)) + λEµλ
[X ] .

Therefore

H(µ̃|µ)− λEµ̃[X ] = H(µ̃|µλ)− log(Z(λ)) ≥ − logZ(λ) .

The minimum is obtained for µ̃ = µλ. �

Corollary 2.15.4. (Minimizers for relative entropy)
a) µλ minimizes the relative entropy µ̃ 7→ H(µ̃|µ) among all ν-absolutely
continuous measures µ̃ with fixed Eµ̃[X ].
b) If we fix λ by requiring Eµλ

[X ] = c, then µλ maximizes the entropy
H(µ̃) among all measures µ̃ satisfying Eµ̃[X ] = c.
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Proof. a) Minimizing µ̃ 7→ H(µ̃|µ) under the constraint Eµ̃[X ] = c is equiv-
alent to minimize

H(µ̃|µ)− λEµ̃[X ],

and to determine the Lagrange multiplier λ by Eµλ
[X ] = c. The above

theorem shows that µλ is minimizing that.
b) If µ = fν, µλ = e−λXf/Z, then

0 ≤ H(µ̃, µλ) = −H(µ̃) + (− log(Z))− λEµ[X ] = −H(µ̃) +H(µλ) .

�

Corollary 2.15.5. If ν = µ is a probability measure, then µλ maximizes

F (µ) = H(µ) + λEµ[X ]

among all measures µ̃ which are absolutely continuous with respect to µ.

Proof. Take µ = ν. Since then f = 1, H(µ̃|µ) = −H(µ̃). The claim follows
from the theorem since a minimum of H(µ̃|µ) − λEµ̃[X ] corresponds to a
maximum of F (µ). �

This corollary can also be proved by calculus of variations, namely by
finding the minimum of F (f) =

∫

f log(f) + Xf dν under the constraint
∫

f dν = 1.

Remark. In statistical mechanics, the measure µλ is called the Gibbs distri-
bution or Gibbs canonical ensemble for the observableX and Z(λ) is called
the partition function. In physics, one uses the notation λ = −(kT )−1,
where T is the temperature. Maximizing H(µ)− (kT )−1Eµ[X ] is the same
as minimizing Eµ[X ] − kTH(µ) which is called the free energy if X is
the Hamiltonian and Eµ[X ] is the energy. The measure µ is the a priori
model, the micro canonical ensemble. Adding the restriction that X has
a specific expectation value c = Eµ[X ] leads to the probability measure
µλ, the canonical ensemble. We illustrated two physical principles: nature
maximizes entropy when the energy is fixed and minimizes the free energy,
when energy is not fixed.

Example. Take on the real line the Hamiltonian X(x) = x2 and a measure
µ = fdx, we get the energy

∫

x2 dµ. Among all symmetric distributions
fixing the energy, the Gaussian distribution maximizes the entropy.

Example. Let Ω = N = {0, 1, 2, . . . } and X(k) = k and let ν be the
counting measure on Ω and µ the Poisson measure with parameter 1. The
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partition function is

Z(λ) =
∑

k

eλk
e−1

k!
= exp(eλ − 1)

so that Λ = R and µλ is given by the weights

µλ(k) = exp(−e−λ + 1)eλk
e−1

k!
= e−α

αk

k!
,

where α = eλ. The exponential family of the Poisson measure is the family
of all Poisson measures.

Example. The geometric distribution on N = {0, 1, 2, 3, . . . } is an expo-
nential family.

Example. The product measure on Ω = {0, 1 }N with win probability p is
an exponential family with respect to X(k) = k.

Example. Ω = {1, . . . , N}, ν the counting measure and let µp be the bino-
mial distribution with p. Take µ = µ1/2 and X(k) = k. Since

0 ≤ H(µ̃|µ) = H(µ̃|µp) + log(p)E[X ] + log(1− p)E[(N − E[X ])]

= −H(µ̃|µp) +H(µp) ,

µp is an exponential family.

Remark. There is an obvious generalization of the maximum entropy prin-
ciple to the case, when we have finitely many random variables {Xi}ni=1.
Given µ = fν we define the (n-dimensional) exponential family

µλ = fλν =
e
∑n

i=1 λiXi

Z(λ)
µ ,

where
Z(λ) = Eµ[e

∑n
i=1 λiXi ]

is the partition function defined on a subset Λ of Rn.

Theorem 2.15.6. For all probability measures µ̃ which are absolutely con-
tinuous with respect to ν, we have for all λ ∈ Λ

H(µ̃|µ)−
∑

i

λiEµ̃[Xi] ≥ − logZ(λ) .

The minimum − logZ(λ) is obtained for µλ. If we fix λi by requiring
Eµλ

[Xi] = ci, then µλ maximizes the entropy H(µ̃) among all measures
µ̃ satisfying Eµ̃[Xi] = ci.
Assume ν = µ is a probability measure. The measure µλ maximizes

F (µ̃) = H(µ̃) + λEµ̃[X ] .
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Proof. Take the same proofs as before by replacing λX with λ · X =
∑

i λiXi. �

2.16 Markov operators

Definition. Given a not necessarily finite probability space (Ω,A, ν). A
linear operator P : L1(Ω) → L1(Ω) is called a Markov operator, if

P1 = 1,
f ≥ 0 ⇒ Pf ≥ 0,
f ≥ 0 ⇒ ||Pf ||1 = ||f ||1.

Remark. In other words, a Markov operator P has to leave the closed
positive cone invariant L1

+ = {f ∈ L1 | f ≥ 0 } and preserve the norm on
that cone.

Remark. A Markov operator on (Ω,A, ν) leaves invariant the set D(ν) =
{f ∈ L1 | f ≥ 0, ||f ||1 = 1 } of probability densities. They correspond
bijectively to the set P(ν) of probability measures which are absolutely
continuous with respect to ν. A Markov operator is therefore also called a
stochastic operator.

Example. Let T be a measure preserving transformation on (Ω,A, ν). It is
called nonsingular if T ∗ν is absolutely continuous with respect to ν. The
unique operator P : L1 → L1 satisfying

∫

A

Pf dν =

∫

T−1A

f dν

is called the Perron-Frobenius operator associated to T . It is a Markov
operator. Closely related is the operator Pf(x) = f(Tx) for measure pre-
serving invertible transformations. This Koopman operator is often studied
on L2, but it becomes a Markov operator when considered as a transfor-
mation on L1.

Exercise. Assume Ω = [0, 1] with Lebesgue measure µ. Verify that the
Perron-Frobenius operator for the tent map

T (x) =

{

2x , x ∈ [0, 1/2]
2(1− x) , x ∈ [1/2, 1]

is Pf(x) = 1
2 (f(

1
2x) + f(1− 1

2x)).

Here is an abstract version of the Jensen inequality (2.5.1). It is due to M.
Kuczma. See [62].
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Theorem 2.16.1 (Jensen inequality for positive operators). Given a convex
function u and an operator P : L1 → L1 mapping positive functions into
positive functions satisfying P1 = 1, then

u(Pf) ≤ Pu(f)

for all f ∈ L1
+ for which Pu(f) exists.

Proof. We have to show u(Pf)(ω) ≤ Pu(f)(ω) for almost all ω ∈ Ω. Given
x = (Pf)(ω), there exists by definition of convexity a linear function y 7→
ay + b such that u(x) = ax+ b and u(y) ≥ ay + b for all y ∈ R. Therefore,
since af + b ≤ u(f) and P is positive

u(Pf)(ω) = a(Pf)(ω) + b = P (af + b)(ω) ≤ P (u(f))(ω) .

�

The following theorem states that relative entropy does not increase along
orbits of Markov operators. The assumption that {f > 0 } is mapped into
itself is actually not necessary, but simplifies the proof.

Theorem 2.16.2 (Voigt, 1981). Given a Markov operator P which maps
{f > 0 } into itself. For all f, g ∈ L1

+,

H(Pf |Pg) ≤ H(f |g) .

Especially, since H(f |1) = −H(f) is the entropy, a Markov operator does
not decrease entropy:

H(Pf) ≥ H(f) .

Proof. We can assume that {g(ω) = 0 } ⊂ A = {f(ω) = 0 } because
nothing is to show in the case H(f |g) = ∞. By restriction to the measure
space (Ac,A ∩ Ac, ν(· ∩ Ac)), we can assume f > 0, g > 0 so that by our
assumption also Pf > 0 and Pg > 0.

(i) Assume first (f/g)(ω) ≤ c for some constant c ∈ R.
For fixed g, the linear operator Rh = P (hg)/P (g) maps positive functions
into positive functions. Take the convex function u(x) = x log(x) and put
h = f/g. Using Jensen’s inequality, we get

Pf

Pg
log

Pf

Pg
= u(Rh) ≤ Ru(h) =

P (f log(f/g))

Pg
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which is equivalent to Pf log Pf
Pg ≤ P (f log(f/g)). Integration gives

H(Pf |Pg) =

∫

Pf log
Pf

Pg
dν

≤
∫

P (f log(f/g)) dν =

∫

f log(f/g) dν = H(f |g) .

(ii) Define fk = inf(f, kg) so that fk/g ≤ k. We have fk ≤ fk+1 and
fk → f in L1. From (i) we know that H(Pfk|Pg) ≤ H(fk|g). We can
assume H(f |g) < ∞ because the result is trivially true in the other case.
Define B = {f ≤ g}. On B, we have fk log(fk/g) = f log(f/g) and on Ω\B
we have

fk log(fk/g) ≤ fk+1 log(fk+1/g)u→ f log(f/g)

so that by Lebesgue dominated convergence theorem (2.4.3),

H(f |g) = lim
k→∞

H(fk|g) .

As an increasing sequence, Pfk converges to Pf almost everywhere. The
elementary inequality x log(x) − x ≥ x log(y)− y for all x ≥ y ≥ 0 gives

(Pfk) log(Pfk)− (Pfk) log(Pg)− (Pfk) + (Pg) ≥ 0 .

Integration gives with Fatou’s lemma (2.4.2)

H(Pf |Pg)− ||Pf ||+ ||Pg|| ≤ lim inf
k→∞

H(Pfk|Pg)− ||Pfk||+ ||Pg||

and so H(Pf |Pg) ≤ lim infk→∞H(Pfk|Pg). �

Corollary 2.16.3. For an invertible Markov operator P, the relative entropy
is constant: H(Pf |Pg) = H(f |g).

Proof. Because P and P−1 are both Markov operators,

H(f |g) = H(PP−1f |PP−1g) ≤ H(P−1f |P−1g) ≤ H(f |g) .
�

Example. If a measure preserving transformation T is invertible, then the
corresponding Koopman operator and Perron-Frobenius operators preserve
relative entropy.

Corollary 2.16.4. The operator T (µ)(A) =
∫

R2 1A(
x+y√

2
) dµ(x) dµ(y) does

not decrease entropy.
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Proof. Denote by Xµ a random variable having the law µ and with µ(X)
the law of a random variable. For a fixed random variable Y , we define the
operator

PY (µ) = µ(
Xµ + Y√

2
) .

It is a Markov operator. By Voigt’s theorem (2.16.2), the operator PY does
not decrease entropy. Since every PY has this property, also the nonlinear
map T (µ) = PXµ(µ) shares this property. �

We have shown as a corollary of the central limit theorem that T has a
unique fixed point attractive all of P0,1. The entropy is also strictly in-
creasing at infinitely many points of the orbit T n(µ) since it converges to
the fixed point with maximal entropy. It follows that T is not invertible.

More generally: given a sequence Xn of IID random variables. For every n,
the map Pn which maps the law of S∗

n into the law of S∗
n+1 is a Markov

operator which does not increase entropy. We can summarize: summing up
IID random variables tends to increase the entropy of the distributions.
A fixed point of a Markov operator is called a stationary state or in more
physical language a thermodynamic equilibrium. Important questions are:
is there a thermodynamic equilibrium for a given Markov operator P and
if yes, how many are there?

2.17 Characteristic functions

Distribution functions are in general not so easy to deal with, as for ex-
ample, when summing up independent random variables. It is therefore
convenient to deal with its Fourier transforms, the characteristic functions.
It is an important topic by itself [61].

Definition. Given a random variable X , its characteristic function is a real-
valued function on R defined as

φX(u) = E[eiuX ] .

If FX is the distribution function of X and µX its law, the characteristic
function of X is the Fourier-Stieltjes transform

φX(t) =

∫

R

eitx dFX(x) =

∫

R

eitx µX(dx) .

Remark. If FX is a continuous distribution function dFX(x) = fX(x) dx,
then φX is the Fourier transform of the density function fX :

∫

R

eitx fX(x) dx .

Remark. By definition, characteristic functions are Fourier transforms of
probability measures: if µ is the law of X , then φX = µ̂.
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Example. For a random variable with density fX(x) = xm/(m + 1) on
Ω = [0, 1] the characteristic function is

φX(t) =

∫ 1

0

eitxxm dx/(m+ 1) =
m!(1− eitem(−it))
(−it)1+m(m+ 1)

,

where en(x) =
∑n
k=0 x

k/(k!) is the n’th partial exponential function.

Theorem 2.17.1 (Lèvy formula). The characteristic function φX determines
the distribution of X . If a, b are points of continuity of F , then

FX(b)− FX(a) =
1

2π

∫ ∞

−∞

e−ita − e−itb

it
φX(t) dt . (2.12)

In general, one has

1

2π

∫ ∞

−∞

e−ita − e−itb

it
φX(t) dt = µ[(a, b)] +

1

2
µ[{a}] + 1

2
µ[{b}] .

Proof. Because a distribution function F has only countably many points of
discontinuities, it is enough to determine F (b)−F (a) in terms of φ if a and
b are continuity points of F . The verification of the Lévy formula is then
a computation. For continuous distributions with density F ′

X = fX is the
inverse formula for the Fourier transform: fX(a) = 1

2π

∫∞
−∞ e−itaφX(t) dt

so that FX(a) = 1
2π

∫∞
−∞

e−ita

−it φX(t) dt. This proves the inversion formula
if a and b are points of continuity.
The general formula needs only to be verified when µ is a point measure
at the boundary of the interval. By linearity, one can assume µ is located
on a single point b with p = P[X = b] > 0. The Fourier transform of the
Dirac measure pδb is φX(t) = peitb. The claim reduces to

1

2π

∫ ∞

−∞

e−ita − e−itb

it
peitb dt =

p

2

which is equivalent to the claim limR→∞
∫ R

−R
eitc−1
it dt = π for c > 0.

Because the imaginary part is zero for every R by symmetry, only

lim
R→∞

∫ R

−R

sin(tc)

t
dt = π

remains. The verification of this integral is a prototype computation in
residue calculus. �
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Theorem 2.17.2 (Characterization of weak convergence). A sequence Xn

of random variables converges weakly to X if and only if its characteristic
functions converge point wise:

φXn(x) → φX .

Proof. Because the exponential function eitx is continuous for each t, it
follows from the definition that weak convergence implies the point wise
convergence of the characteristic functions. From formula (2.12) follows
that if the characteristic functions converge point wise, then convergence
in distribution takes place. We have learned in lemma (2.13.2) that weak
convergence is equivalent to convergence in distribution. �

Example. Here is a table of characteristic functions (CF) φX(t) = E[eitX ]
and moment generating functions (MGF)MX(t) = E[etX ] for some familiar
random variables:

Distribution Parameter CF MGF

Normal m ∈ R, σ2 > 0 emit−σ
2t2/2 emt+σ

2t2/2

N(0, 1) e−t
2/2 et

2/2

Uniform [−a, a] sin(at)/(at) sinh(at)/(at)
Exponential λ > 0 λ/(λ− it) λ/(λ− t)
binomial n ≥ 1, p ∈ [0, 1] (1− p+ peit)n (1− p+ pet)n

Poisson λ > 0, λ eλ(e
it−1) eλ(e

t−1)

Geometric p ∈ (0, 1) p
(1−(1−p)eit

p
(1−(1−p)et

first success p ∈ (0, 1) peit

(1−(1−p)eit
pet

(1−(1−p)et
Cauchy m ∈ R, b > 0 eimt−|t| emt−|t|

Definition. Let F and G be two probability distribution functions. Their
convolution F ⋆ G is defined as

F ⋆ G(x) =

∫

R

F (x− y) dG(y) .

Lemma 2.17.3. If F and G are distribution functions, then F ⋆ G is again
a distribution function.

Proof. We have to verify the three properties which characterize distribu-
tion functions among real-valued functions as in proposition (2.12.1).
a) Since F is nondecreasing, also F ⋆ G is nondecreasing.
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b) Because F (−∞) = 0 we have also F ⋆G(−∞) = 0. Since F (∞) = 1 and
dG is a probability measure, also F ⋆ G(∞) = 1.
c) Given a sequence hn → 0. Define Fn(x) = F (x + hn). Because F
is continuous from the right, Fn(x) converges point wise to F (x). The
Lebesgue dominated convergence theorem (2.4.3) implies that Fn ⋆G(x) =
F ⋆ G(x + hn) converges to F ⋆ G(x). �

Example. Given two discrete distributions

F (x) =
∑

n≤x
pn, G(x) =

∑

n≤x
qn .

Then F⋆G(x) =
∑

n≤x(p⋆q)n, where p⋆q is the convolution of the sequences

p, q defined by (p ⋆ q)n =
∑n
k=0 pkqn−k. We see that the convolution of

discrete distributions gives again a discrete distribution.

Example. Given two continuous distributions F,G with densities h and k.
Then the distribution of F ⋆ G is given by the convolution

h ⋆ k(x) =

∫

R

h(x− y)k(y) dy

because

(F ⋆ G)′(x) =
d

dx

∫

R

F (x− y)k(y) dy =

∫

h(x− y)k(y) dy .

Lemma 2.17.4. If F and G are distribution functions with characteristic
functions φ and ψ, then F ⋆ G has the characteristic function φ · ψ.

Proof. While one can deduce this fact directly from Fourier theory, we
prove it by hand: use an approximation of the integral by step functions:

∫

R

eiuxd(F ⋆ G)(x)

= lim
N,n→∞

N2n
∑

k=−N2n+1

eiuk2
−n

∫

R

[F (
k

2n
− y)− F (

k − 1

2n
− y)] dG(y)

= lim
N,n→∞

N2n
∑

k=−N2n+1

∫

R

eiu
k
2n −y[F (

k

2n
− y)− F (

k − 1

2n
− y)] · eiuy dG(y)

=

∫

R

[ lim
N→∞

∫ N−y

−N−y
eiux dF (x)]eiuy dG(y) =

∫

R

φ(u)eiuy dG(y)

= φ(u)ψ(u) .

�
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It follows that the set of distribution functions forms an associative com-
mutative group with respect to the convolution multiplication. The reason
is that the characteristic functions have this property with point wise mul-
tiplication.

Characteristic functions become especially useful, if one deals with inde-
pendent random variables. Their characteristic functions multiply:

Proposition 2.17.5. Given a finite set of independent random variables
Xj , j = 1, . . . , n with characteristic functions φj . The characteristic func-
tion of

∑n
j=1Xj is φ =

∏n
j=1 φj .

Proof. Since Xj are independent, we get for any set of complex valued
measurable functions gj , for which E[gj(Xj)] exists:

E[

n
∏

j=1

gj(Xj)] =

n
∏

j=1

E[gj(Xj)] .

Proof: This follows almost immediately from the definition of independence
since one can check it first for functions gj = 1Aj , where Aj are σ(Xj

measurable functions for which gj(Xj)gk(Xk) = 1Aj∩Ak
and

E[gj(Xj)gk(Xk)] = m(Aj)m(Ak) = E[gj(Xj)]E[gk(Xk)] ,

then for step functions by linearity and then for arbitrary measurable func-
tions.

If we put gj(x) = exp(ix), the proposition is proved. �

Example. IfXn are IID random variables which take the values 0 and 2 with
probability 1/2 each, the random variable X =

∑∞
n=1Xn/3

n is a random
variable with the Cantor distribution. Because the characteristic function
of Xn is φXn/3n(t) = E[eitXn/3

n

] = ei2/3
n−1
2 , we see that the characteristic

function of X is

φX(t) =
∞
∏

i=1

ei2/3
n − 1

2
.

The centered random variable Y = X − 1/2 can be written as Y =
∑∞

n=1 Yn/3
n, where Yn takes values −1, 1 with probability 1/2. So

φY (t) =
∏

n

E[eitYn/3
n

] =
∏

n

ei/3
n

+ e−i/3
n

2
=

∞
∏

n=1

cos(
t

3n
) .

This formula for the Fourier transform of a singular continuous measure µ
has already been derived by Wiener. The Fourier theory of fractal measures
has been developed much more since then.
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Figure. The characteristic func-
tion φY (t) of a random variable
Y with a centered Cantor distri-
bution supported on [−1/2, 1/2]
has an explicit formula φY (t) =
∏∞
n=1 cos(

t
3n ) and already been

derived by Wiener in the early
20’th century. The formula can
also be used to compute moments
of Y with the moment formula
E[Xm] = (−i)m dm

dtmφX(t)|t=0.
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Corollary 2.17.6. The probability density of the sum of independent ran-
dom variables

∑n
j=1Xj is f1 ⋆ f2 ⋆ · · · ⋆ fn, if Xj has the density fj.

Proof. This follows immediately from proposition (2.17.5) and the alge-
braic isomorphisms between the algebra of characteristic functions with
convolution product and the algebra of distribution functions with point
wise multiplication. �

Example. Let Yk be IID random variables and let Xk = λkYk with 0 < λ <
1. The process Sn =

∑n
k=1Xk is called the random walk with variable step

size or the branching random walk with exponentially decreasing steps. Let
µ be the law of the random sumX =

∑∞
k=1Xk. If φY (t) is the characteristic

function of Y , then the characteristic function of X is

φX(t) =

∞
∏

n=1

φX(tλn) .

For example, if the random Yn take values−1, 1 with probability 1/2, where
φY (t) = cos(t), then

φX(t) =

∞
∏

n=1

cos(tλn) .

The measure µ is then called a Bernoulli convolution. For example, for
λ = 1/3, the measure is supported on the Cantor set as we have seen
above. For more information on this stochastic process and the properties
of the measure µ which in a subtle way depends on λ, see [41].

Exercise. The characteristic function of a vector valued random variable
X = (X1, . . . , Xk) is the real-valued function

φX(t) = E[eit·X ]
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on Rk, where we wrote t = (t1, . . . , tk). Two such random variables X,Y
are independent, if the σ-algebras X−1(B) and Y −1(B) are independent,
where B is the Borel σ-algebra on Rk.
a) Show that if X and Y are independent then φX+Y = φX · φY .
b) Given a real nonsingular k × k matrix A called the covariance matrix
and a vector m = (m1, . . . ,mk) called the mean of X . We say, a vector
valued random variable X has a Gaussian distribution with covariance A
and mean m, if

φX(t) = eim·t− 1
2 (t·At) .

Show that the sum X +Y of two Gaussian distributed random variables is
again Gaussian distributed.
c) Find the probability density of a Gaussian distributed random variable
X with covariance matrix A and mean m.

Exercise. The Laplace transform of a positive random variable X ≥ 0 is
defined as lX(t) = E[e−tX ]. The moment generating function is defined as
M(t) = E[etX ] provided that the expectation exists in a neighborhood of
0. The generating function of an integer-valued random variable is defined
as ζ(X) = E[uX ] for u ∈ (0, 1). What does independence of two random
variables X,Y mean in terms of (i) the Laplace transform, (ii) the moment
generating function or (iii) the generating function?

Exercise. Let (Ω,A, µ) be a probability space and let U, V ∈ X be ran-
dom variables (describing the energy density and the mass density of a
thermodynamical system). We have seen that the Helmholtz free energy

Eµ̃[U ]− kTH [µ̃]

(k is a physical constant), T is the temperature, is taking its minimum for
the exponential family. Find the measure minimizing the free enthalpy or
Gibbs potential

Eµ̃[U ]− kTH [µ̃]− pEµ[V ] ,

where p is the pressure.

Exercise. Let (Ω,A, µ) be a probability space andXi ∈ L random variables.
Compute Eµ[Xi] and the entropy of µλ in terms of the partition function
Z(λ).
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Exercise. a) Given the discrete measure space (Ω = {ǫ0 + nδ}, ν), with
ǫ0 ∈ R and δ > 0 and where ν is the counting measure and let X(k) = k.
Find the distribution f maximizing the entropy H(f) among all measures
µ̃ = fν fixing Eµ̃[X ] = ǫ.
b) The physical interpretation is as follows: Ω is the discrete set of ener-
gies of a harmonic oscillator, ǫ0 is the ground state energy, δ = ~ω is the
incremental energy, where ω is the frequency of the oscillation and ~ is
Planck’s constant. X(k) = k is the Hamiltonian and E[X ] is the energy.
Put λ = 1/kT , where T is the temperature (in the answer of a), there ap-
pears a parameter λ, the Lagrange multiplier of the variational problem).
Since can fix also the temperature T instead of the energy ǫ, the distribu-
tion in a) maximizing the entropy is determined by ω and T . Compute the
spectrum ǫ(ω, T ) of the blackbody radiation defined by

ǫ(ω, T ) = (E[X ]− ǫ0)
ω2

π2c3

where c is the velocity of light. You have deduced then Planck’s blackbody
radiation formula.

2.18 The law of the iterated logarithm

We will give only a proof of the law of iterated logarithm in the special
case, when the random variables Xn are independent and have all the
standard normal distribution. The proof of the theorem for general IID
random variables Xn can be found for example in [109]. The central limit
theorem makes the general result plausible when knowing this special case.

Definition. A random variable X ∈ L is called symmetric if its law µX
satisfies:

µ((−b,−a)) = µ([a, b))

for all a < b. A symmetric random variable X ∈ L1 has zero mean. We
again use the notation Sn =

∑n
k=1Xk in this section.

Lemma 2.18.1. Let Xn by symmetric and independent. For every ǫ > 0

P[ max
1≤k≤n

Sk > ǫ] ≤ 2P[Sn > ǫ] .

Proof. This is a direct consequence of Lévy’s theorem (2.11.6) because we
can take m = 0 as the median of a symmetric distribution. �

Definition. Define for n ≥ 2 the constants Λn =
√
2n log logn. It grows only

slightly faster than
√
2n. For example, in order that the factor

√
log logn

is 3, we already have n = exp(exp(9)) > 1.33 · 103519.
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Theorem 2.18.2 (Law of iterated logarithm for N(0, 1)). Let Xn be a se-
quence of IID N(0, 1)-distributed random variables. Then

lim sup
n→∞

Sn
Λn

= 1, lim inf
n→∞

Sn
Λn

= −1 .

Proof. We follow [47]. Because the second statement follows obviously from
the first one by replacing Xn by −Xn, we have only to prove

lim sup
n→∞

Sn/Λn = 1 .

(i) P[Sn > (1 + ǫ)Λn, infinitely often] = 0 for all ǫ > 0.

Define nk = [(1+ ǫ)k] ∈ N, where [x] is the integer part of x and the events

Ak = {Sn > (1 + ǫ)Λn, for some n ∈ (nk, nk+1] }.

Clearly lim supk Ak = {Sn > (1+ǫ)Λn, infinitely often}. By the first Borel-
Cantelli lemma (2.2.2), it is enough to show that

∑

k P[Ak] <∞. For each
large enough k, we get with the above lemma

P[Ak] ≤ P[ max
nk<n≤nk+1

Sn > (1 + ǫ)Λk]

≤ P[ max
1≤n≤nk+1

Sn > (1 + ǫ)Λk]

≤ 2P[Snk+1
> (1 + ǫ)Λk] .

The right-hand side can be estimated further using that Snk+1
/
√
nk+1

is N(0, 1)-distributed and that for a N(0, 1)-distributed random variable

P[X > t] ≤ const · e−t2/2

2P[Snk+1
> (1 + ǫ)Λk] = 2P[

(

Snk+1√
nk+1

> (1 + ǫ)

√
2nk log lognk√

nk+1

)

]

≤ C exp(−1

2
(1 + ǫ)2)

2nk log lognk
nk+1

)

≤ C1 exp(−(1 + ǫ) log log(nk))

= C1 log(nk)
−(1+ǫ) ≤ C2k

−(1+ǫ) .

Having shown that P[Ak] ≤ const · k−(1+ǫ) for large enough k proves the
claim

∑

k P[Ak] <∞.

(ii) P[Sn > (1− ǫ)Λn, infinitely often] = 1 for all ǫ > 0.

It suffices to show, that for all ǫ > 0, there exists a subsequence nk

P[Snk
> (1 − ǫ)Λnk

, infinitely often] = 1 .
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Given ǫ > 0. Choose N > 1 large enough and c < 1 near enough to 1 such
that

c
√

1− 1/N − 2/
√
N > 1− ǫ . (2.13)

Define nk = Nk and ∆nk = nk − nk−1. The sets

Ak = {Snk
− Snk−1

> c
√

2∆nk log log∆nk}

are independent. In the following estimate, we use the fact that
∫∞
t
e−x

2/2 dx ≥
C · e−t2/2 for some constant C.

P[Ak] = P[{Snk
− Snk−1

> c
√

2∆nk log log∆nk}]

= P[{Snk
− Snk−1√
∆nk

> c

√
2∆nk log log∆nk√

∆nk
}]

≥ C · exp(−c2 log log∆nk) ≤ C · exp(−c2 log(k logN))

= C1 · exp(−c2 log k) = C1k
−c2

so that
∑

k P[Ak] = ∞. We have therefore by Borel-Cantelli a set A of full
measure so that for ω ∈ A

Snk
− Snk−1

> c
√

2∆nk log log∆nk

for infinitely many k. From (i), we know that

Snk
> −2

√

2nk log lognk

for sufficiently large k. Both inequalities hold therefore for infinitely many
values of k. For such k,

Snk
(ω) > Snk−1

(ω) + c
√

2∆nk log log∆nk

≥ −2
√

2nk−1 log lognk−1 + c
√

2∆nk log log∆nk

≥ (−2/
√
N + c

√

1− 1/N)
√

2nk log lognk

≥ (1− ǫ)
√

2nk log lognk ,

where we have used assumption (2.13) in the last inequality. �

We know that N(0, 1) is the unique fixed point of the map T by the central
limit theorem. The law of iterated logarithm is true for T (X) implies that
it is true for X . This shows that it would be enough to prove the theorem
in the case when X has distribution in an arbitrary small neighborhood of
N(0, 1). We would need however sharper estimates.

We present a second proof of the central limit theorem in the IID case, to
illustrate the use of characteristic functions.

Theorem 2.18.3 (Central limit theorem for IID random variables). Given
Xn ∈ L2 which are IID with mean 0 and finite variance σ2. Then
Sn/(σ

√
n) → N(0, 1) in distribution.
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Proof. The characteristic function of N(0, 1) is φ(t) = e−t
2/2. We have to

show that for all t ∈ R

E[e
it Sn

σ
√

n ] → e−t
2/2 .

Denote by φXn the characteristic function of Xn. Since by assumption
E[Xn] = 0 and E[X2

n] = σ2, we have

φXn(t) = 1− σ2

2
t2 + o(t2) .

Therefore

E[e
it Sn

σ
√

n ] = φXn(
t

σ
√
n
)n

= (1− 1

2

t2

n
+ o(

1

n
))n

= e−t
2/2 + o(1) .

�

This method can be adapted to other situations as the following example
shows.

Proposition 2.18.4. Given a sequence of independent events An ⊂ Ω with
P[An] = 1/n. Define the random variables Xn = 1An and Sn =

∑n
k=1Xk.

Then

Tn =
Sn − log(n)
√

log(n)

converges to N(0, 1) in distribution.

Proof.

E[Sn] =

n
∑

k=1

1

k
= log(n) + γ + o(1) ,

where γ = limn→∞
∑n

k=1
1
k − log(n) is the Euler constant.

Var[Sn] =

n
∑

k=1

1

k
(1− 1

k
) = log(n) + γ − π2

6
+ o(1) .

satisfy E[Tn] → 0 and Var[Tn] → 1. Compute φXn = 1 − 1
n + eit

n so that

φSn(t) =
∏n
k=1(1 − 1

k + eit

k ) and φTn(t) = φSn(s(t))e
−is log(n), where s =
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t/
√

log(n). For n→ ∞, we compute

logφTn(t) = −it
√

log(n) +

n
∑

k=1

log(1 +
1

k
(eis − 1))

= −it
√

log(n) +
n
∑

k=1

log(1 +
1

k
(is− 1

2
s2 + o(s2)))

= −it
√

log(n) +

n
∑

k=1

1

k
(is+

1

2
s2 + o(s2)) +O(

n
∑

k=1

s2

k2
)

= −it
√

log(n) + (is− 1

2
s2 + o(s2))(log(n) +O(1)) + t2O(1)

=
−1

2
t2 + o(1) → −1

2
t2 .

We see that Tn converges in law to the standard normal distribution. �
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Chapter 3

Discrete Stochastic Processes

3.1 Conditional Expectation

Definition. Given a probability space (Ω,A,P). A second measure P′ on
(Ω,A) is called absolutely continuous with respect to P, if P[A] = 0 implies
P′[A] = 0 for all A ∈ A. One writes P′ ≪ P.

Example. If P[a, b] = b− a is the uniform distribution on Ω = [0, 1] and A
is the Borel σ-algebra, and Y ∈ L1 satisfies Y (x) ≥ 0 for all x ∈ Ω, then

P′[a, b] =
∫ b

a Y (x) dx is absolutely continuous with respect to P.

Example. Assume P is again the Lebesgue measure on [0, 1] as in the last
example. If Y (x) = 1B(x), then P′[A] = P[A∩B] for all A ∈ A. If P[B] < 1,
then P is not absolutely continuous with respect to P′. We have P′[Bc] = 0
but P[Bc] = 1− P[B] > 0.

Example. If P′[A] =

{

1 1/2 ∈ A
0 1/2 /∈ A

, then P′ is not absolutely continuous

with respect to P. For B = {1/2}, we have P[B] = 0 but P′[B] = 1 6= 0.

The next theorem is a reformulation of a classical theorem of Radon-
Nykodym of 1913 and 1930.

Theorem 3.1.1 (Radon-Nykodym equivalent). Given a measure P′ which
is absolutely continuous with respect to P, then there exists a unique
Y ∈ L1(P) with P′ = Y P. The function Y is called the Radon-Nykodym
derivative of P′ with respect to P . It is unique in L1.

Proof. We can assume without loss of generality that P′ is a positive mea-
sure (do else the Hahn decomposition P = P+ − P−), where P+ and P−

129
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are positive measures).

(i) Construction: We recall the notation E[Y ;A] = E[1A Y ] =
∫

A
Y dP .

The set Γ = {Y ≥ 0 | E[Y ;A] ≤ P′[A], ∀A ∈ A } is closed under formation
of suprema

E[Y1 ∨ Y2;A] = E[Y1;A ∩ {Y1 > Y2}] + E[Y2;A ∩ {Y2 ≥ Y1}]
≤ P′[A ∩ {Y1 > Y2}] + P′[A ∩ {Y2 ≥ Y1}] = P′[A]

and contains a function Y different from 0 since else, P′ would be singular
with respect to P according to the definition given in section (2.12) of abso-
lute continuity. We claim that the supremum Y of all functions Γ satisfies
Y P = P′: an application of Beppo-Lévi’s theorem (2.4.1) shows that the
supremum of Γ is in Γ. The measure P′′ = P′ − Y P is the zero measure
since we could do the same argument with a new set Γ for the absolutely
continuous part of P′′.
(ii) Uniqueness: assume there exist two derivatives Y, Y ′. One has then
E[Y − Y ′; {Y ≥ Y ′}] = 0 and so Y ≥ Y ′ almost everywhere. A similar
argument gives Y ′ ≤ Y almost everywhere, so that Y = Y ′ almost every-
where. In other words, Y = Y ′ in L1. �

Theorem 3.1.2 (Existence of conditional expectation, Kolmogorov 1933).
Given X ∈ L1(A) and a sub σ-algebra B ⊂ A. There exists a random
variable Y ∈ L1(B) with

∫

A Y dP =
∫

AX dP for all A ∈ B.

Proof. Define the measures P̃[A] = P[A] and P′[A] =
∫

AX dP = E[X ;A]

on the probability space (Ω,B). Given a set B ∈ B with P̃ [B] = 0, then
P′[B] = 0 so that P ′ is absolutely continuous with respect to P̃ . Radon-
Nykodym’s theorem (3.1.1) provides us with a random variable Y ∈ L1(B)
with P′[A] =

∫

A
X dP =

∫

A
Y dP . �

Definition. The random variable Y in this theorem is denoted with E[X |B]
and called the conditional expectation of X with respect to B. The random
variable Y ∈ L1(B) is unique in L1(B). If Z is a random variable, then
E[X |Z] is defined as E[X |σ(Z)]. If {Z}I is a family of random variables,
then E[X |{Z}I ] is defined as E[X |σ({Z}I)].
Example. If B is the trivial σ-algebra B = {∅,Ω}, then E[X |B] = E[X ].

Example. If B = A, then E[X |B] = X .

Example. If B = {∅, Y, Y c,Ω} then

E[X |B](ω) =
{

1
m(Y )

∫

Y X dP for ω ∈ Y ,
∫
Y c X dP

m(Y c) for ω ∈ Y c .
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Example. Let (Ω,A,P) = ([0, 1] × [0, 1],A, dxdy), where A is the Borel
σ-algebra defined by the Euclidean distance metric on the square Ω. Let B
be the σ-algebra of sets A× [0, 1], where A is in the Borel σ-algebra of the
interval [0, 1]. If X(x, y) is a random variable on Ω, then Y = E[X |B] is the
random variable

Y (x, y) =

∫ 1

0

X(x, y) dy .

This conditional integral only depends on x.

Remark. This notion of conditional expectation will be important later.
Here is a possible interpretation of conditional expectation: for an exper-
iment, the possible outcomes are modeled by a probability space (Ω,A)
which is our ”laboratory”. Assume that the only information about the
experiment are the events in a subalgebra B of A. It models the ”knowl-
edge” obtained from some measurements we can do in the laboratory and
B is generated by a set of random variables {Zi}i∈I obtained from some
measuring devices. With respect to these measurements, our best knowl-
edge of the random variable X is the conditional expectation E[X |B]. It is
a random variable which is a function of the measurements Zi. For a spe-
cific ”experiment ω, the conditional expectation E[X |B](ω) is the expected
value of X(ω), conditioned to the σ-algebra B which contains the events
singled out by data from Xi.

Proposition 3.1.3. The conditional expectation X 7→ E[X |B] is the projec-
tion from L2(A) onto L2(B).

Proof. The space L2(B) of square integrable B-measurable functions is a
linear subspace of L2(A). When identifying functions which agree almost
everywhere, then L2(B) is a Hilbert space which is a linear subspace of the
Hilbert space L2(A). For any X ∈ L2(A), there exists a unique projection
p(X) ∈ L2(B). The orthogonal complement L2(B)⊥ is defined as

L2(B)⊥ = {Z ∈ L2(A) | (Z, Y ) := E[Z · Y ] = 0 for all Y ∈ L2(B) } .

By the definition of the conditional expectation, we have for A ∈ B

(X − E[X |B], 1A) = E[X − E[X |B];A] = 0 .

Therefore X−E[X |B] ∈ L2(B)⊥. Because the map q(X) = E[X |B] satisfies
q2 = q, it is linear and has the property that (1 − q)(X) is perpendicular
to L2(B), the map q is a projection which must agree with p. �

Example. Let Ω = {1, 2, 3, 4 } and A the σ-algebra of all subsets of Ω. Let
B = {∅, {1, 2}, {3, 4},Ω}. What is the conditional expectation Y = E[X |B]
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of the random variable X(k) = k2? The Hilbert space L2(A) is the four-
dimensional space R4 because a random variable X is now just a vector
X = (X(1), X(2), X(3), X(4)). The Hilbert space L2(B) is the set of all
vectors v = (v1, v2, v3, v4) for which v1 = v2 and v3 = v4 because functions
which would not be constant in (v1, v2) would generate a finer algebra. It is
the two-dimensional subspace of all vectors {v = (a, a, b, b) | a, b ∈ R }. The
conditional expectation projects onto that plane. The first two components

(X(1), X(2)) project to (X(1)+X(2)√
2

, X(1)+X(2)√
2

), the second two components

project to (X(3)+X(4)√
2

, X(3)+X(4)√
2

). Therefore,

E[X |B] = (
X(1) +X(2)√

2
,
X(1) +X(2)√

2
,
X(3) +X(4)√

2
,
X(3) +X(4)√

2
) .

Remark. This proposition 3.1.3 means that Y is the least-squares best B-
measurable square integrable predictor. This makes conditional expectation
important for controlling processes. If B is the σ-algebra describing the
knowledge about a process (like for example the data which a pilot knows
about an plane) and X is the random variable (which could be the actual
data of the flying plane), we want to know, then E[X |B] is the best guess
about this random variable, we can make with our knowledge.

Exercise. Given two independent random variables X,Y ∈ L2 such that X
has the Poisson distribution Pλ and Y has the Poisson distribution Pµ. The
random variable Z = X + Y has Poisson distribution Pλ+µ as can be seen
with the help of characteristic functions. Let B be the σ-algebra generated
by Z. Show that

E[X |B] = λ

λ+ µ
Z .

Hint: It is enough to show

E[X ; {Z = k}] = λ

λ+ µ
P[Z = k] .

Even if random variables are only in L1, the next list of properties of
conditional expectation can be remembered better with proposition 3.1.3
in mind which identifies conditional expectation as a projection, if they are
in L2.
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Theorem 3.1.4 (Properties of conditional expectation). For given random
variables X,Xn, Y ∈ L, the following properties hold:
(1) Linearity: The map X 7→ E[X |B] is linear.
(2) Positivity: X ≥ 0 ⇒ E[X |B] ≥ 0.
(3) Tower property: C ⊂ B ⊂ A ⇒ E[E[X |B]|C] = E[X |C].
(4) Conditional Fatou: |Xn| ≤ X, E[lim infn→∞Xn|B] ≤
lim infn→∞ E[Xn|B].
(5) Conditional dominated convergence: |Xn| ≤ X,Xn → X a.e.
⇒ E[Xn|B] → E[X |B] a.e.
(6) Conditional Jensen: if h is convex, then E[h(X)|B] ≥ h(E[X |B]).
Especially ||E[X |B]||p ≤ ||X ||p.
(7) Extracting knowledge: For Z ∈ L∞(B), one has E[ZX |B] = ZE[X |B].
(8) Independence: if X is independent of C, then E[X |C] = E[X ].

Proof. (1) The conditional expectation is a projection by Proposition (5.2)
and so linear.

(2) For positivity, note that if Y = E[X |B] would be negative on a set of
positive measure, then A = Y −1((−∞,−1/n]) ∈ B would have positive
probability for some n. This would lead to the contradiction 0 ≤ E[1AX ] =
E[1AY ] ≤ −n−1m(A) < 0.

(3) Use that P ′′ ≪ P ′ ≪ P implies P ′′ = Y ′P ′ = Y ′Y P and P ′′ ≪ P gives
P ′′ = ZP so that Z = Y ′Y almost everywhere.
This is especially useful when applied to the algebra CY = {∅, Y, Y c,Ω}.
Because X ≤ Y almost everywhere if and only if E[X |CY ] ≤ E[Y |CY ] for
all Y ∈ B.

(4)-(5) The conditional versions of the Fatou lemma or the dominated con-
vergence theorem (2.4.3) are true, if they are true conditioned with CY for
each Y ∈ B. The tower property reduces these statements to versions with
B = CY which are then on each of the sets Y, Y c the usual theorems.

(6) Chose a sequence (an, bn) ∈ R2 such that h(x) = supn anx+ bn for all
x ∈ R. We get from h(X) ≥ anX + bn that almost surely E[h(X)|G] ≥
anE[X |G] + bn. These inequalities hold therefore simultaneously for all n
and we obtain almost surely

E[h(X)|G] ≥ sup
n
(anE[X |G] + bn) = h(E[X |G]) .

The corollary is obtained with h(x) = |x|p.

(7) It is enough to condition it to each algebra CY for Y ∈ B. The tower
property reduces these statements to linearity.
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(8) By linearity, we can assume X ≥ 0. For B ∈ B and C ∈ C, the random
variables X1B and 1C are independent so that

E[X1B∩C] = E[X1B1C ] = E[X1B]P[C] .

The random variable Y = E[X |B] is B measurable and because Y 1B is
independent of C we get

E[(Y 1B)1C ] = E[Y 1B]P[C]

so that E[1B∩CX ] = E[1B∩CY ]. The measures on σ(B, C)

µ : A 7→ E[1AX ], ν : A 7→ E[1AY ]

agree therefore on the π-system of the form B ∩ C with B ∈ B and C ∈ C
and consequently everywhere on σ(B, C). �

Remark. From the conditional Jensen property in theorem (3.1.4), it fol-
lows that the operation of conditional expectation is a positive and contin-
uous operation on Lp for any p ≥ 1.

Remark. The properties of Conditional Fatou, Lebesgue and Jensen are
statements about functions in L1(B) and not about numbers as the usual
theorems of Fatou, Lebesgue or Jensen.

Remark. Is there for almost all ω ∈ Ω a probability measure Pω such that

E[X |B](ω) =
∫

Ω

X dPω ?

If such a map from Ω to M1(Ω) exists and if it is B-measurable, it is called
a regular conditional probability given B. In general such a map ω 7→ Pω
does not exist. However, it is known that for a probability space (Ω,A,P)
for which Ω is a complete separable metric space with Borel σ-algebra A,
there exists a regular probability space for any sub σ-algebra B of A.

Exercise. This exercise deals with conditional expectation.
a) What is E[Y |Y ]?
b) Show that if E[X |A] = 0 and E[X |B] = 0, then E[X |σ(A,B)] = 0.
c) Given X,Y ∈ L1 satisfying E[X |Y ] = Y and E[Y |X ] = X . Verify that
X = Y almost everywhere.

We add a notation which is commonly used.

Definition. The conditional probability space (Ω,A,P[·|B]) is defined by

P[B | B] = E[1B|B] .
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ForX ∈ Lp, one has the conditional moment E[Xp|B] if B be a σ-subalgebra
of A. They are B-measurable random variables and generalize the usual
moments. Of special interest is the conditional variance:

Definition. For X ∈ L2, the conditional variance Var[X |B] is the random
variable E[X2|B]−E[X |B]2. Especially, if B is generated by a random vari-
able Y , one writes Var[X |Y ] = E[X2|Y ]− E[X |Y ]2.
Remark. In an earlier version, the statement for two independent random
variables X and Z, the conditional variance given Y of their sum is equal
to the sum of their conditional variances was mentioned in a remark. Luo
Jun found the following counter example which we include as an exercise.

Exercise. (Due to Luo Jun) Let Ω = {1, 2, 3, 4} with the counting measure.
Define the events A = {3, 4}, B = {2, 4}, C = {2, 3} and the random
variables X = 1A, Y = 1B, Z = 1Z .
a) Verify that E[X |Y ]E[Z|Y ] 6= E[XZ|Y ].
b) Verify that Var[X + Z|Y ] 6= Var[X,Y ] + Var[X,Z].

Lemma 3.1.5. (Law of total variance) For X ∈ L2 and an arbitrary random
variable Y , one has

Var[X ] = E[Var[X |Y ]] + Var[E[X |Y ]] .

Proof. By the definition of the conditional variance as well as the properties
of conditional expectation:

Var[X ] = E[X2]− E[X ]2

= E[E[X2|Y ]]− E[E[X |Y ]]2
= E[Var[X |Y ]] + E[E[X |Y ]2]− E[E[X |Y ]]2
= E[Var[X |Y ]] + Var[E[X |Y ]] .

�

Here is an application which illustrates how one can use of the conditional
variance in applications: the Cantor distribution is the singular continuous
distribution with the law µ has its support on the standard Cantor set.

Corollary 3.1.6. (Variance of the Cantor distribution) The standard Cantor
distribution for the Cantor set on [0, 1] has the expectation 1/2 and the
variance 1/8.
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Proof. Let X be a random variable with the Cantor distribution. By sym-

metry, E[X ] =
∫ 1

0
x dµ(x) = 1/2. Define the σ-algebra

{∅, [0, 1/3), [1/3, 1], [0, 1] }

on Ω = [0, 1]. It is generated by the random variable Y = 1[0,1/3). Define
Z = E[X |Y ]. It is a random variable which is constant 1/6 on [0, 1/3)
and equal to 5/6 on [1/3, 1]. It has the expectation E[Z] = (1/6)P[Y =
1] + (5/6)P[Y = 0] = 1/12 + 5/12 = 1/2 and the variance

Var[Z] = E[Z2]− E[Z]2 =
1

36
P[Y = 1] +

25

36
P[Y = 0]− 1/4 = 1/9 .

Define the random variable W = Var[X |Y ] = E[X2|Y ] − E[X |Y ]2 =

E[X2|Y ] − Z2. It is equal to
∫ 1/3

0 (x − 1/6)2 dx on [0, 1/3] and equal to
∫ 1

2/3(x− 5/6)2 dx on [2/3, 3/3]. By the self-similarity of the Cantor set, we

see that W = Var[X |Y ] is actually constant and equal to Var[X ]/9. The
identity E[Var[X |Y ]] = Var[X ]/9 implies

Var[X ] = E[Var[X |Y ]] + Var[E[X |Y ]] = E[W ] + Var[Z] =
Var[X ]

9
+

1

9
.

Solving for Var[X ] gives Var[X ] = 1/8. �

Exercise. Given a probability space (Ω,A,P) and a σ-algebra B ⊂ A.
a) Show that the map P : X ∈ L1 7→ E[X |B] is a Markov operator from
L1(A,P) to L1(B, Q), where Q is the conditional probability measure on
(Ω,B) defined by Q[A] = P[A] for A ∈ B.
b) The map T can also be viewed as a map on the new probability space
(Ω,B, Q), where Q is the conditional probability. Denote this new map by
S. Show that S is again measure preserving and invertible.

Exercise. a) Given a measure preserving invertible map T : Ω → Ω we call
(Ω, T,A,P) a dynamical system. A complex number λ is called an eigen-
value of T , if there exists X ∈ L2 such that X(T ) = λX . The map T is said
to have pure point spectrum, if there exists a countable set of eigenvalues
λi such that their eigenfuctions Xi span L2. Show that if T has pure point
spectrum, then also S has pure point spectrum.
b) A measure preserving dynamical system (∆, S,B, ν) is called a factor of a
measure preserving dynamical system (Ω, T,A, µ) if there exists a measure
preserving map U : Ω → ∆ such that S ◦U(x) = U ◦T (x) for all x ∈ Ω. Ex-
amples of factors are the system itself or the trivial system (Ω, S(x) = x, µ).
If S is a factor of T and T is a factor of S, then the two systems are called
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isomorphic. Verify that every factor of a dynamical system (Ω, T,A, µ) can
be realized as (Ω, T,B, µ) where B is a σ-subalgebra of A.
c) It is known that if a measure preserving transformation T on a proba-
bility space has pure point spectrum, then the system is isomorphic to a
translation on the compact Abelian group Ĝ which is the dual group of the
discrete group G formed by the spectrum σ(T ) ⊂ T. Describe the possible
factors of T and their spectra.

Exercise. Let Ω = T1 be the one-dimensional circle. Let A be the Borel σ-
algebra on T1 = R/(2πZ) and P = dx the Lebesgue measure. Given k ∈ N,
denote by Bk the σ-algebra consisting of all A ∈ A such that A + n2π

k =
A (mod 2π) for all 1 ≤ n ≤ k. What is the conditional expectation E[X |Bk]
for a random variable X ∈ L1?

3.2 Martingales

It is typical in probability theory is that one considers several σ-algebras on
a probability space (Ω,A,P). These algebras are often defined by a set of
random variables, especially in the case of stochastic processes. Martingales
are discrete stochastic processes which generalize the process of summing
up IID random variables. It is a powerful tool with many applications. In
this section we follow largely [113].

Definition. A sequence {An}n∈N of sub σ-algebras of A is called a fil-
tration, if A0 ⊂ A1 ⊂ · · · ⊂ A. Given a filtration {An}n∈N, one calls
(Ω,A, {An}n∈N,P) a filtered space.

Example. If Ω = {0, 1}N is the space of all 0− 1 sequences with the Borel
σ-algebra generated by the product topology and An is the finite set of
cylinder sets A = {x1 = a1, . . . , xn = an } with ai ∈ {0, 1}, which contains
2n elements, then {An}n∈N is a filtered space.

Definition. A sequence X = {Xn}n∈N of random variables is called a dis-
crete stochastic process or simply process. It is a Lp-process, if each Xn

is in Lp. A process is called adapted to the filtration {An} if Xn is An-
measurable for all n ∈ N.

Example. For Ω = {0, 1}N as above, the process Xn(x) =
∏n
i=1 xi is

a stochastic process adapted to the filtration. Also Sn(x) =
∑n
i=1 xi is

adapted to the filtration.

Definition. A L1-process which is adapted to a filtration {An} is called a
martingale if

E[Xn|An−1] = Xn−1
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for all n ≥ 1. It is called a supermartingale if E[Xn|An−1] ≤ Xn−1 and a
submartingale if E[Xn|An−1] ≥ Xn−1. If we mean either submartingale or
supermartingale (or martingale) we speak of a semimartingale.

Remark. It immediately follows that for a martingale

E[Xn|Am] = Xm

if m < n and that E[Xn] is constant. Allan Gut mentions in [34] that a
martingale is an allegory for ”life” itself: the expected state of the future
given the past history is equal the present state and on average, nothing
happens.

Figure. A random variable X on the unit square defines a gray scale picture
if we interpret X(x, y) is the gray value at the point (x, y). It shows Joseph
Leo Doob (1910-2004), who developed basic martingale theory and many
applications. The partitions An = {[k/2n(k + 1)/2n) × [j/2n(j + 1)/2n)}
define a filtration of Ω = [0, 1]× [0, 1]. The sequence of pictures shows the
conditional expectations E[X |An]. It is a martingale.

Exercise. Determine from the following sequence of pictures, whether it is a
supermartingale or a submartingale. The images get brighter and brighter
in average as the resolution becomes better.
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Definition. If a martingale Xn is given with respect to a filtered space
An = σ(Y0, . . . , Yn), where Yn is a given process, X is is called a martingale
with respect Y .

Remark. The word ”martingale” means a gambling system in which losing
bets are doubled. It is also the name of a part of a horse’s harness or a belt
on the back of a man’s coat.

Remark. If X is a supermartingale, then −X is a submartingale and vice
versa. A supermartingale, which is also a submartingale is a martingale.
Since we can change X to X−X0 without destroying any of the martingale
properties, we could assume the process is null at 0 which means X0 = 0.

Exercise. a) Verify that if Xn, Yn are two submartingales, then sup(X,Y )
is a submartingale.
b) If Xn is a submartingale, then E[Xn] ≤ E[Xn−1].
c) If Xn is a martingale, then E[Xn] = E[Xn−1].

Remark. Given a martingale. From the tower property of conditional ex-
pectation follows that for m < n

E[Xn|Am] = E[E[Xn|An−1]|Am] = E[Xn−1|Am] = · · · = Xm .

Example. Sum of independent random variables
Let Xi ∈ L1 be a sequence of independent random variables with mean
E[Xi] = 0. Define S0 = 0, Sn =

∑n
k=1Xk and An = σ(X1, . . . , Xn) with

A0 = {∅,Ω}. Then Sn is a martingale since Sn is an {An}-adapted L1-
process and

E[Sn|An−1] = E[Sn−1|An−1] + E[Xn|An−1] = Sn−1 + E[Xn] = Sn−1 .

We have used linearity, the independence property of the conditional ex-
pectation.

Example. Conditional expectation
Given a random variable X ∈ L1 on a filtered space (Ω,A, {An}n∈N,P).
Then Xn = E[X |An] is a martingale.
Especially: given a sequence Yn of random variables. ThenAn = σ(Y0, . . . , Yn)
is a filtered space and Xn = E[X |Y0, . . . , Yn] is a martingale. Proof: by the
tower property

E[Xn|An−1] = E[Xn|Y0, . . . , Yn−1]

= E[E[X |Y0, . . . , Yn]|Y0, . . . , Yn−1]

= E[X |Y0, . . . , Yn−1] = Xn−1 .
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verifying the martingale property E[Xn|An−1] = Xn−1.
We say X is a martingale with respect to Y . Note that because Xn is by
definition σ(Y0, . . . , Yn)-measurable, there exist Borel measurable functions
hn : Rn+1 → R such that Xn = hn(Y0, . . . , Yn−1).

Example. Product of positive variables
Given a sequence Yn of independent random variables Yn ≥ 0 satisfying
with E[Yn] = 1. Define X0 = 1 and Xn =

∏n
i=0 Yi and An = σ(Y1, . . . , Yn).

Then Xn is a martingale. This is an exercise. Note that the martingale
property does not follow directly by taking logarithms.

Example. Product of matrix-valued random variables
Given a sequence of independent random variables Zn with values in the
group GL(N,R) of invertible N ×N matrices and let An = σ(Z1, . . . , Zn).
Assume E[log ||Zn||] ≤ 0, if ||Zn|| denotes the norm of the matrix (the
square root of the maximal eigenvalue of Zn ·Z∗

n, where Z
∗
n is the adjoint).

Define the real-valued random variables Xn = log ||Z1 · Z2 · · ·Zn||, where ·
denotes matrix multiplication. Because Xn ≤ log ||Zn||+Xn−1, we get

E[Xn|An−1] ≤ E[log ||Zn|| | An−1] + E[Xn−1|An−1]

= E[log ||Zn||] +Xn−1 ≤ Xn−1

so that Xn is a supermartingale. In ergodic theory, such a matrix-valued
process Xn is called sub-additive.

Example. If Zn is a sequence of matrix valued random variables, we can
also look at the sequence of random variables Yn = ||Z1 · Z2 · · ·Zn||. If
E[||Zn||] = 1, then Yn is a supermartingale.

Example. Polya’s urn scheme
An urn contains initially a red and a black ball. At each time n ≥ 1, a
ball is taken randomly, its color noted, and both this ball and another
ball of the same color are placed back into the urn. Like this, after n
draws, the urn contains n+2 balls. Define Yn as the number of black balls
after n moves and Xn = Yn/(n + 2), the fraction of black balls. We claim
that X is a martingale with respect to Y : the random variables Yn take
values in {1, . . . , n+ 1}. Clearly P[Yn+1 = k + 1|Yn = k] = k/(n+ 2) and
P[Yn+1 = k|Yn = k] = 1− k/(n+ 2). Therefore

E[Xn+1|Y1, . . . , Yn] =
1

n+ 3
E[Yn+1|Y1, . . . , Yn]

=
1

n+ 3
P[Yn+1 = k + 1|Yn = k] · Yn+1

+P[Yn+1 = k | Yn = k] · Yn
=

1

n+ 3
[(Yn + 1)

Yn
n+ 2

+ Yn(1−
Yn
n+ 2

)]

=
Yn
n+ 2

= Xn .

Note that Xn is not independent of Xn−1. The process ”learns” in the sense
that if there are more black balls, then the winning chances are better.
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Figure. A typical run of 30
experiments with Polya’s urn
scheme.

Example. Branching processes
Let Zni be IID, integer-valued random variables with positive finite mean
m. Define Y0 = 1 and

Yn+1 =

Yn
∑

k=1

Znk

with the convention that for Yn = 0, the sum is zero. We claim that Xn =
Yn/m

n is a martingale with respect to Y . By the independence of Yn and
Zni, i ≥ 1, we have for every n

E[Yn+1|Y0, . . . , Yn] = E[

Yn
∑

k=1

Znk|Y0, . . . , Yn] = E[

Yn
∑

k=1

Znk] = mYn

so that

E[Xn+1|Y0, . . . , Yn] = E[Yn+1|Y0, . . . Yn]/mn+1 = mYn/m
n+1 = Xn .

The branching process can be used to model population growth, disease
epidemic or nuclear reactions. In the first case, think of Yn as the size of a
population at time n and with Zni the number of progenies of the i − th
member of the population, in the n’th generation.

Figure. A typical growth of Yn of
a branching process. In this ex-
ample, the random variables Zni
had a Poisson distribution with
mean m = 1.1. It is possible that
the process dies out, but often, it
grows exponentially.
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Proposition 3.2.1. Let An be a fixed filtered sequence of σ-algebras. Lin-
ear combinations of martingales over An are again martingales over An.
Submartingales and supermartingales form cones: if for example X,Y are
submartingales and a, b > 0, then aX + bY is a submartingale.

Proof. Use the linearity and positivity of the conditional expectation. �

Proposition 3.2.2. a) IfX is a martingale and u is convex such that u(Xn) ∈
L1, then Y = u(X) is a submartingale. Especially, if X is a martingale,
then |X | is a submartingale.
b) If u is monotone and convex andX is a submartingale such that u(Xn) ∈
L1, then u(X) is a submartingale.

Proof. a) We have by the conditional Jensen property (3.1.4)

Yn = u(Xn) = u(E[Xn+1|An]) ≤ E[u(Xn+1)|An] = E[Yn+1| |An] .

b) Use the conditional Jensen property again and the monotonicity of u to
get

Yn = u(Xn) ≤ u(E[Xn+1|An]) ≤ E[u(Xn+1)|An] = E[Yn+1| |An] .

�

Definition. A stochastic process C = {Cn }n≥1 is called previsible if Cn is
An−1-measurable. A process X is called bounded, if Xn ∈ L∞ and if there
exists K ∈ R such that ||Xn||∞ ≤ K for all n ∈ N.

Previsible processes can only see the past and not see the future. In some
sense we can predict them.

Definition. Given a semimartingale X and a previsible process C, the pro-
cess

(

∫

C dX)n =

n
∑

k=1

Ck(Xk −Xk−1) .

It is called a discrete stochastic integral or a martingale transform.

Theorem 3.2.3 (The system can’t be beaten). If C is a bounded nonnega-
tive previsible process and X is a supermartingale then

∫

C dX is a super-
martingale. The same statement is true for submartingales and martingales.
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Proof. Let Y =
∫

C dX . From the property of ”extracting knowledge” in
theorem (3.1.4), we get

E[Yn−Yn−1|An−1] = E[Cn(Xn−Xn−1)|An−1] = Cn·E[Xn−Xn−1|An−1] ≤ 0

because Cn is nonnegative and Xn is a supermartingale. �

Remark. If one wants to relax the boundedness of C, then one has to
strengthen the condition for X . The proposition stays true, if both C and
X are L2-processes.

Remark. Here is an interpretation: if Xn represents your capital in a game,
then Xn −Xn−1 are the net winnings per unit stake. If Cn is the stake on
game n, then

∫

C dX =

n
∑

k=1

Ck(Xk −Xk−1)

are the total winnings up to time n. A martingale represents a fair game
since E[Xn−Xn−1|An−1] = 0, whereas a supermartingale is a game which
is unfavorable to you. The above proposition tells that you can not find a
strategy for putting your stake to make the game fair.

Figure. In this example, Xn =
±1 with probability 1/2 and
Cn = 1 if Xn−1 is even and
Cn = 0 if Xn−1 is odd. The orig-
inal process Xn is a symmetric
random walk and so a martin-
gale. The new process

∫

C dX is
again a martingale.

Exercise. a) Let Y1, Y2, . . . be a sequence of independent non-negative ran-
dom variables satisfying E[Yk] = 1 for all k ∈ N. Define X0 = 1, Xn =
Y1 · · ·Yn and An = σ(Y1, Y2, . . . , Yn). Show that Xn is a martingale.
b) Let Zn be a sequence of independent random variables taking values in
the set of n × n matrices satisfying E[||Zn||] = 1. Define X0 = 1, Xn =
||Z1 · · ·Zn||. Show that Xn is a supermartingale.

Definition. A random variable T with values in N = N ∪ {∞} is called
a random time. Define A∞ = σ(

⋃

n≥0 An). A random time T is called a
stopping time with respect to a filtration An, if {T ≤ n} ∈ An for all
n ∈ N.
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Remark. A random time T is a stopping time if and only if {T = n } ∈ An

for all n ∈ N since {T ≤ n} =
⋃

0≤k≤n{T = k} ∈ An.

Remark. Here is an interpretation: stopping times are random times, whose
occurrence can be determined without pre-knowledge of the future. The
term comes from gambling. A gambler is forced to stop to play if his capital
is zero. Whether or not you stop after the n−th game depends only on the
history up to and including the time n.

Example. First entry time.
Let Xn be a An-adapted process and given a Borel set B ∈ B in Rd. Define

T (ω) = inf{n ≥ 0 | Xn(ω) ∈ B}

which is the time of first entry of Xn into B. The set {T = ∞} is the set
which never enters into B. Obviously

{T ≤ n} =

n
⋃

k=0

{Xk ∈ B} ∈ An

so that T is a stopping time.

Example. ”Continuous Black-Jack”: let Xi be IID random variables with
uniform distribution in [0, 1]. Define Sn =

∑n
k=1Xi and let T (ω) be the

smallest integer so that Sn(ω) > 1. This is a stopping time. A popular
problem asks for the expectation of this random variable T : How many
”cards” Xi do we have to draw until we get busted and the sum is larger
than 1? We obviously have P[T = 1] = 0. Now, P[T = 2] = P[X2 > 1−X1]
is the area of region {(x, y) ∈ [0, 1] × [0, 1] | y > 1 − x } which is 1/2.
Similarly P[T = 3] = P[X3 > 1 − X1 − X2] is the volume of the solid
{(x, y, z) ∈ [0, 1]3 | z > 1 − x − y } which is 1/6 = 1/3!. Inductively we
see P[T = k] = 1/k! and the expectation of T is E[T ] =

∑∞
k=1 k/k! =

∑∞
k=0 1/k! = e. This means that if we play Black-Jack with uniformly

distributed random variables and threshold 1, we expect to get busted in
more than 2, but less than 3 ”cards”.

Example. Last exit time.
Assume the same setup as in 1). But this time

T (ω) = sup{n ≥ 0 | Xn(ω) ∈ B}

is not a stopping time since it is impossible to know that X will return to
B after some time k without knowing the whole future.

Proposition 3.2.4. Let T1, T2 be two stopping times. The infimum T1 ∧ T2,
the maximum T1 ∨ T2 as well as the sum T1 + T2 are stopping times.
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Proof. This is obvious from the definition because An-measurable functions
are closed by taking minima, maxima and sums. �

Definition. Given a stochastic process Xn which is adapted to a filtration
An and let T be a stopping time with respect to An, define the random
variable

XT (ω) =

{

XT (ω)(ω) , T (ω) <∞
0 , else

or equivalently XT =
∑∞

n=0Xn1{T=n}. The process XT
n = XT∧n is called

the stopped process. It is equal to XT for times T ≤ n and equal to Xn if
T > n.

Proposition 3.2.5. If X is a supermartingale and T is a stopping time, then
the stopped processXT is a supermartingale. In particular E[XT ] ≤ E[X0].
The same statement is true if supermartingale is replaced by martingale in
which case E[XT ] = E[X0].

Proof. Define the ”stake process” C(T ) by C
(T )
n = 1T≤n. You can think of

it as betting 1 unit and quit playing immediately after time T . Define then
the ”winning process”

(

∫

C(T ) dX)n =

n
∑

k=1

C
(T )
k (Xk −Xk−1) = XT∧n −X0 .

or shortly
∫

C(T ) dX = XT −X0. The process C is previsible, since it can

only take values 0 and 1 and {C(T )
n = 0 } = {T ≤ n − 1 } ∈ An−1. The

claim follows from the ”system can’t be beaten” theorem. �

Remark. It is important that we take the stopped process XT and not the
random variable XT :
for the random walk X on Z starting at 0, let T be the stopping time
T = inf{n | Xn = 1 }. This is the martingale strategy in casino which gave
the name of these processes. As we will see later on, the random walk is
recurrent P[T <∞] = 1 in one dimensions. However

1 = E[XT ] 6= E[X0] = 0 .

The above theorem gives E[XT ] = E[X0].

When can we say E[XT ] = E[X0]? The answer gives Doob’s optimal stop-
ping time theorem:
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Theorem 3.2.6 (Doob’s optimal stopping time theorem). Let X be a
supermartingale and T be a stopping time. If one of the five following
conditions are true:

(i) T is bounded.
(ii) X is bounded and T is almost everywhere finite.
(iii) T ∈ L1 and |Xn −Xn−1| ≤ K for some K > 0.
(iv) XT ∈ L1 and limk→∞ E[Xk; {T > k }] = 0.
(v) X is uniformly integrable and T is almost everywhere finite.

then E[XT ] ≤ E[X0].
If X is a martingale and any of the five conditions is true, then E[XT ] =
E[X0].

Proof. We know that E[XT∧n −X0] ≤ 0 because X is a supermartingale.
(i) Because T is bounded, we can take n = supT (ω) <∞ and get

E[XT −X0] = E[XT∧n −X0] ≤ 0 .

(ii) Use the dominated convergence theorem (2.4.3) to get

lim
n→∞

E[XT∧n −X0] ≤ 0 .

(iii) We estimate

|XT∧n −X0| = |
T∧n
∑

k=1

Xk −Xk−1| ≤
T∧n
∑

k=1

|Xk −Xk−1| ≤ TK .

Because T ∈ L1, the result follows from the dominated convergence theo-
rem (2.4.3). Since for each n we have XT∧n −X0 ≤ 0, this remains true
in the limit n→ ∞.
(iv) By (i), we get E[X0] ≥ E[XT∧k] = E[XT ; {T ≤ k}] + E[Xk; {T > k}]
and taking the limit gives E[X0] ≥ limk→∞ E[Xk; {T ≤ k}] → E[XT ] by
the dominated convergence theorem (2.4.3) and the assumption.
(v) The uniformly integrability E[|Xn|; |Xn| > R] → 0 for R → ∞ assures
that XT ∈ L1 since E[|XT |] ≤ k · max1≤i≤k E[|Xk|] + supn E[|Xn|; {T >
k}] < ∞. Since |E[Xk; {T > k}]| ≤ supn E[|Xn|; {T > k}] → 0, we can
apply (iv).

If X is a martingale, we use the supermartingale case for both X and
−X . �

Remark. The interpretation of this result is that a fair game cannot be
made unfair by sampling it with bounded stopping times.
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Theorem 3.2.7 (No winning strategy). Assume X is a martingale and sup-
pose |Xn−Xn−1| is bounded. Given a previsible process C which is bounded
and let T ∈ L1 be a stopping time, then E[(

∫

CdX)T ] = 0.

Proof. We know that
∫

C dX is a martingale and since (
∫

C dX)0 = 0, the
claim follows from the optimal stopping time theorem part (iii). �

Remark. The martingale strategy mentioned in the introduction shows
that for unbounded stopping times, there is a winning strategy. With the
martingale strategy one has T = n with probability 1/2n. The player always
wins, she just has to double the bet until the coin changes sign. But it
assumes an ”infinitely thick wallet”. With a finite but large initial capital,
there is a very small risk to lose, but then the loss is large. You see that in
the real world: players with large capital in the stock market mostly win,
but if they lose, their loss can be huge.

Martingales can be characterized involving stopping times:

Theorem 3.2.8 (Komatsu’s lemma). Let X be an An-adapted sequence of
random variables in L1 such that for every bounded stopping time T

E[XT ] = E[X0] ,

then X is a martingale with respect to An.

Proof. Fix n ∈ N and A ∈ An. The map

T = n+ 1− 1A =

{

n ω ∈ A
n+ 1 ω /∈ A

is a stopping time because σ(T ) = {∅, A,Ac,Ω } ⊂ An. Apply E[XT ] =
E[X0] and E[XT ′ ] = E[X0] for the bounded constant stopping time T ′ =
n+ 1 to get

E[Xn;A] + E[Xn+1;A
c] = E[XT ] = E[X0] = E[XT ′ ] = E[Xn+1]

= E[Xn+1;A] + E[Xn+1;A
c]

so that E[Xn+1;A] = E[Xn;A]. Since this is true, for any A ∈ An, we know
that E[Xn+1|An] = E[Xn|An] = Xn and X is a martingale. �

Example. The gambler’s ruin problem is the following question: Let Yi be
IID with P[Yi = ±1] = 1/2 and let Xn =

∑n
k=1 Yi be the random walk
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with X0 = 0. We know that X is a martingale with respect to Y . Given
a, b > 0, we define the stopping time

T = min{n ≥ 0 | Xn = b, or Xn = −a } .

We want to compute P[XT = −a] and P[XT = b] in dependence of a, b.

Figure. Three samples of a pro-
cess Xn starting at X0 = 0.
The process is stopped with the
stopping time T , when Xn hits
the lower bound −a or the upper
bound b. If Xn is the winning of a
first gambler, which is the loss of
a second gambler, then T is the
time, for which one of the gam-
blers is broke. The initial capital
of the first gambler is a, the ini-
tial capital of the second gambler
is b.

Remark. If Yi are the outcomes of a series of fair gambles between two
players A and B and the random variables Xn are the net change in the
fortune of the gamblers after n independent games. If at the beginning, A
has fortune a and B has fortune b, then P[XT = −a] is the ruin probability
of A and P[XT = b] is the ruin probability of B.

Proposition 3.2.9.

P[XT = −a] = 1− P[XT = b] =
b

(a+ b)
.

Proof. T is finite almost everywhere. One can see this by the law of the
iterated logarithm,

lim sup
n

Xn

Λn
= 1, lim inf

n

Xn

Λn
= −1 .

(We will give later a direct proof the finiteness of T , when we treat the
random walk in more detail.) It follows that P[XT = −a] = 1−P[XT = b].
We check that Xk satisfies condition (iv) in Doob’s stopping time theorem:
since XT takes values in {a, b }, it is in L1 and because on the set {T > k },
the value of Xk is in (−a, b), we have |E[Xk; {T > k }]| ≤ max{a, b}P[T >
k] → 0. �
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Remark. The boundedness of T is necessary in Doob’s stopping time the-
orem. Let T = inf{n | Xn = 1 }. Then E[XT ] = 1 but E[X0] = 0] which
shows that some condition on T or X has to be imposed. This fact leads
to the ”martingale” gambling strategy defined by doubling the bet when
loosing. If the casinos would not impose a bound on the possible inputs,
this gambling strategy would lead to wins. But you have to go there with
enough money. One can see it also like this, If you are A and the casino is
B and b = 1, a = ∞ then P[XT = b] = 1, which means that the casino is
ruined with probability 1.

Theorem 3.2.10 (Wald’s identity). Assume T is a stopping time of a L1-
process Y for which Yi are L∞ IID random variables with expectation
E[Yi] = m and T ∈ L1. The process Sn =

∑n
k=1 Yk satisfies

E[ST ] = mE[T ] .

Proof. The process Xn = Sn − n E[Y1] is a martingale satisfying condition
(iii) in Doob’s stopping time theorem. Therefore

0 = E[X0] = E[XT ] = E[ST − TE[Y1]] .

Now solve for E[ST ] = E[T ]E[Y1] = mE[T ]. �

In other words, if we play a game where the expected gain in each step is
m and the game is stopped with a random time T which has expectation
t = E[T ], then we expect to win mt.

Remark. One could assume Y to be a L2 process and T in L2.

3.3 Doob’s convergence theorem

Definition. Given a stochastic process X and two real numbers a < b, we
define the random variable

Un[a, b](ω) = max{k ∈ N | ∃
0 ≤ s1 < t1 < · · · < sk < tk ≤ n,

Xsi(ω) < a,Xti(ω) > b, 1 ≤ i ≤ k } .

It is lcalled the number of up-crossings in [a, b]. Denote by U∞[a, b] the
limit

U∞[a, b] = lim
n→∞

Un[a, b] .

Because n 7→ Un[a, b] is monotone, this limit exists in N ∪ {∞}.
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Figure. A random walk crossing
two values a < b. An up-crossing
is a time s, where Xs < a un-
til the time, when the first time
Xt > b. The random variable
Un[a, b] with values in N mea-
sures the number of up-crossings
in the time interval [0, n].
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Theorem 3.3.1 (Doob’s up-crossing inequality). If X is a supermartingale.
Then

(b − a)E[Un[a, b]] ≤ E[(Xn − a)−] .

Proof. Define C1 = 1{X0<a } and inductively for n ≥ 2 the process

Cn := 1{Cn−1=1 }1{Xn−1≤b } + 1{Cn−1=0 }1{Xn−1<a } .

It is a previsible process. Define the winning process Y =
∫

C dX which
satisfies by definition Y0 = 0. We have the winning inequality

Yn(ω) ≥ (b− a)Un[a, b](ω)− (Xn(ω)− a)− .

Every up-crossing of [a, b] increases the Y -value (the winning) by at least
(b − a), while (Xn − a)− is essentially the loss during the last interval of
play.
Since C is previsible, bounded and nonnegative, we know that Yn is also a
supermartingale (see ”the system can’t be beaten”) and we have therefore
E[Yn] ≤ 0. Taking expectation of the winning inequality leads to the claim.

�

Remark. The proof uses the following strategy for putting your stakes C:
wait until X gets below a. Play then unit stakes until X gets above b and
stop playing. Wait again until X gets below a, etc.

Definition. We say, a stochastic processXn is bounded in Lp, if there exists
M ∈ R such that ||Xn||p ≤M for all n ∈ N.

Corollary 3.3.2. If X is a supermartingale which is bounded in L1. Then

P[U∞[a, b] = ∞] = 0 .
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Proof. By the up-crossing lemma, we have for each n ∈ N

(b− a)E[Un[a, b]] ≤ |a|+ E[|Xn|] ≤ |a|+ sup
n

||Xn||1 <∞ .

By the dominated convergence theorem (2.4.3)

(b− a)E[U∞[a, b]] <∞ ,

which gives the claim. �

Remark. If Sn =
∑n

k=1Xk is the one dimensional random walk, then it is
a martingale which is unbounded in L1. In this case, E[U∞[a, b]] = ∞.

Theorem 3.3.3 (Doob’s convergence theorem). LetXn be a supermartingale
which is bounded in L1. Then

X∞ = lim
n→∞

Xn

exists almost everywhere.

Proof.

Λ = {ω ∈ Ω | Xn has no limit in [−∞,∞] }
= {ω ∈ Ω | lim inf Xn < lim supXn }
=

⋃

a<b,a,b∈Q

{ω ∈ Ω | lim inf Xn < a < b < lim supXn }

=
⋃

a<b,a,b∈Q

Λa,b .

Since Λa,b ⊂ {U∞[a, b] = ∞ } we have P[Λa,b] = 0 and therefore also
P[Λ] = 0. Therefore X∞ = limn→∞Xn exists almost surely. By Fatou’s
lemma

E[|X∞|] = E[lim inf
n→∞

|Xn|) ≤ lim inf
n→∞

E[|Xn|] ≤ sup
n

E[|Xn|] <∞

so that P[X∞ <∞] = 1. �

Example. Let X be a random variable on ([0, 1),A,P), where P is the
Lebesgue measure. The finite σ-algebra An generated by the intervals

Ak = [
k

2n
,
k + 1

2n
)

defines a filtration and Xn = E[X |An] is a martingale which converges. We
will see below with Lévys upward theorem (3.4.2 that the limit actually is
the random variable X .
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Example. Let Xk be IID random variables in L1. For 0 < λ < 1, the
branching random walk Sn =

∑n
k=0 λ

kXk is a martingale which is bounded
in L1 because

||Sn||1 ≤ 1

1− λ
||X0||1 .

The martingale converges by Doob’s convergence theorem almost surely.
One can also deduce this from Kolmogorov’s theorem (2.11.3) if Xk ∈ L2.
Doobs convergence theorem (3.3.3) assures convergence for Xk ∈ L1.

Remark. Of course, we can replace supermartingale by submartingale or
martingale in the theorem.

Example. We look again at Polya’s urn scheme, which was defined earlier.
Since the process Y giving the fraction of black balls is a martingale and
bounded 0 ≤ Y ≤ 1, we can apply the convergence theorem: there exists
Y∞ with Yn → Y∞.

Corollary 3.3.4. If X is a non-negative supermartingale, then X∞ =
limn→∞Xn exists almost everywhere and is finite.

Proof. Since the supermartingale property gives E[|Xn|] = E[Xn] ≤ E[X0],
the process Xn is bounded in L1. Apply Doob’s convergence theorem. �

Remark. This corollary is also true for non-positive submartingales or mar-
tingales, which are either nonnegative or non-positive.

Example. For the Branching process, we had IID random variables Zni
with positive finite mean m and defined Y0 = 0, Yn+1 =

∑Yn

k=1 Znk. We
saw that the process Xn = Yn/m

n is non-negative and a martingale. Ac-
cording to the above corollary, the limit X∞ exists almost everywhere. It
is an interesting problem to find the distribution of X∞: Assume Zni have
the generating function f(θ) = E[θZni ].

(i) Yn has the generating function fn(θ) = f(fn−1)(θ).
We prove this by induction. For n = 1 this is trivial. Using the independence
of Znk we have

E[θYn+1 |Yn = k] = f(θ)k

and so
E[θYn+1|Yn] = f(θ)Zn .

By the tower property, this leads to

E[θYn+1] = E[f(θ)Zn ] .

Write α = f(θ) and use induction to simplify the right hand side to

E[f(θ)Yn ] = E[αYn ] = fn(α) = fn(f(θ)) = fn+1(θ) .
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(ii) In order to find the distribution of X∞ we calculate instead the char-
acteristic function

L(λ) = L(X∞)(λ) = E[exp(iλX∞)] .

Since Xn → X∞ almost everywhere, we have L(Xn)(λ) → L(X∞)(λ).
Since Xn = Yn/m

n and E[θYn ] = fn(θ), we have

L(Xn)(λ) = fn(eiλ/m
n

)

so that L satisfies the functional equation

L(λm) = f(L(λ)) .

Theorem 3.3.5 (Limit distribution of the branching process). For the
branching process defined by IID random variables Zni having the gen-
erating function f , the Fourier transform L(λ) = E[eiλX∞ ] of the distribu-
tion of the limit martingale X∞ can be computed by solving the functional
equation

L(λ ·m) = f(L(λ)) .

Remark. If f has no analytic extension to the complex plane, we have to
replace the Fourier transform with the Laplace transform

L(λ) = E[e−λX∞ ] .

Remark. Related to Doob’s convergence theorem for supermartingales is
Kingman’s subadditive ergodic theorem, which generalizes Birkhoff ergodic
theorem and which we state without proof. Neither of the two theorems
are however corollaries of each other.

Definition. A sequence of random variables Xn is called subadditive with
respect to a measure preserving transformation T , ifXm+n ≤ Xm+Xn(T

m)
almost everywhere.

Theorem 3.3.6 (The subadditive ergodic theorem of Kingmann). Given a
sequence of random variables, which Xn : X → R ∪ {−∞} with X+

n :=
max(0, Xn) ∈ L1(X) and which is subadditive with respect to a measure
preserving transformation T . Then there exists a T -invariant integrable
measurable function X : Ω → R ∪ {−∞} such that 1

nXn(x) → X(x) for
almost all x ∈ X . Furthermore 1

nE[Xn] → E[X ].



154 Chapter 3. Discrete Stochastic Processes

If the condition of boundedness of the process in Doob’s convergence the-
orem is strengthened a bit by assuming that Xn is uniformly integrable,
then one can reverse in some sense the convergence theorem:

Theorem 3.3.7 (Doob’s convergence theorem for uniformly integrable su-
permartingales). A supermartingale Xn is uniformly integrable if and only
if there exists X such that Xn → X in L1.

Proof. If Xn is uniformly integrable, then Xn is bounded in L1 and Doob’s
convergence theorem gives Xn → X almost everywhere. But a uniformly
integrable family Xn which converges almost everywhere converges in L1.
On the other hand, a sequence Xn ∈ L1 converging to X ∈ L1 is uniformly
integrable. �

Theorem 3.3.8 (Characterization of uniformly integrable martingales). An
An-adapted process is an uniformly integrable martingale if and only if
Xn → X in L1 and Xn = E[X |An].

Proof. By Doob’s convergence theorem (3.3.7), we know the ”only if”-part.
To prove the ”if” part, assume Xn = E[X |An] → X . We already know that
Xn = E[X |An] is a martingale. What we have to show is that it is uniformly
integrable.
Given ǫ > 0. Choose δ > 0 such that for all A ∈ A, the condition P[A] < δ
implies E[|X |;A] < ǫ. Choose further K ∈ R such that K−1 · E[|X |] < δ.
By Jensen’s inequality

E[|Xn|] = E[|E[X |An]|] ≤ E[E[|X ||An]] ≤ E[|X |] .

Therefore
K · P[|Xn| > K] ≤ E[|Xn|] ≤ E[|X |] ≤ δ ·K

so that P[|Xn| > K] < δ. By definition of conditional expectation, |Xn| ≤
E[|X ||An] and {|Xn| > K} ∈ An

E[|Xn|; |Xn| > K] ≤ E[|X |; |Xn| > K] < ǫ .

�

Remark. As a summary we can say that supermartingaleXn which is either
bounded in L1 or nonnegative or uniformly integrable converges almost
everywhere.
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Exercise. Let S and T be stopping times satisfying S ≤ T .
a) Show that the process

Cn(ω) = 1{S(ω)<n≤T (ω)}

is previsible.
b) Show that for every supermartingale X and stopping times S ≤ T the
inequality

E[XT ] ≤ E[XS ]

holds.

Exercise. In Polya’s urn process, let Yn be the number of black balls after
n steps. Let Xn = Yn/(n+ 2) be the fraction of black balls. We have seen
that X is a martingale.
a) Prove that P[Yn = k] = 1/(n+ 1) for every 1 ≤ k ≤ n+ 1.
b) Compute the distribution of the limit X∞.

Exercise. a) Which polynomials f can you realize as generating functions
of a probability distribution? Denote this class of polynomials with P.
b) Design a martingale Xn, where the iteration of polynomials P ∈ P plays
a role.
c) Use one of the consequences of Doob’s convergence theorem to show
that the dynamics of every polynomial P ∈ P on the positive axis can be
conjugated to a linear map T : z 7→ mz: there exists a map L such that

L ◦ T (z) = P ◦ L(z)

for every z ∈ R+.

Example. The branching process Yn+1 =
∑Yn

k=1 Znk defined by random
variables Znk having generating function f and mean m defines a mar-
tingale Xn = Yn/m

n. We have seen that the Laplace transform L(λ) =
E[e−λX∞ ] of the limit X∞ satisfies the functional equation

L(mλ) = f(L(λ)) .

We assume that the IID random variables Znk have the geometric distribu-
tion P[Z = k] = p(1−p)k = pqk with parameter 0 < p < 1. The probability
generating function of this distribution is

f(θ) = E[θZ ] =

∞
∑

k=1

pqkθk =
p

1− qθ
.
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As we have seen in proposition (2.12.5),

E[Z] =

∞
∑

k=1

pqkk =
q

p
.

The function fn(θ) can be computed as

fn(θ) =
pmn(1− θ) + qθ − p

qmn(1− θ) + qθ − p
.

This is because f is a Möbius transformation and iterating f corresponds

to look at the power An =

[

0 p
−q 1

]n

. This power can be computed by

diagonalisating A:

An = (q − p)−1

[

1 p
1 q

] [

pn 0
0 qn

] [

q −p
−1 1

]

.

We get therefore

L(λ) = E[e−λX∞ ] = lim
n→∞

E[e−λYn/m
n

] = lim
n→∞

fn(e
λ/mn

) =
pλ+ q − p

qλ+ q − p
.

If m ≤ 1, then the law of X∞ is a Dirac mass at 0. This means that the
process dies out. We see that in this case directly that limn→∞ fn(θ) = 1. In
the case m > 1, the law of X∞ has a point mass at 0 of weight p/q = 1/m
and an absolutely continuous part (1/m − 1)2e(1/m−1)x dx. This can be
seen by performing a ”look up” in a table of Laplace transforms

L(λ) =
p

q
e−λ0 +

∫ ∞

0

(1− p/q)2e(p/q−1)x · e−λx dx .

Definition. Define pn = P[Yn = 0], the probability that the process dies
out until time n. Since pn = fn(0) we have pn+1 = f(pn). If f(p) = p, p is
called the extinction probability.

Proposition 3.3.9. For a branching process with E[Z] ≥ 1, the extinction
probability is the unique solution of f(x) = x in (0, 1). For E[Z] ≤ 1, the
extinction probability is 1.

Proof. The generating function f(θ) = E[θZ ] =
∑∞

n=0 P[Z = n]θn =
∑

n pnθ
n is analytic in [0, 1]. It is nondecreasing and satisfies f(1) = 1.

If we assume that P[Z = 0] > 0, then f(0) > 0 and there exists a unique
solution of f(x) = x satisfying f ′(x) < 1. The orbit fn(u) converges to
this fixed point for every u ∈ (0, 1) and this fixed point is the extinction
probability of the process. The value of f ′(0) = E[Z] decides whether there
exists an attractive fixed point in the interval (0, 1) or not. �
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3.4 Lévy’s upward and downward theorems

Lemma 3.4.1. Given X ∈ L1. Then the class of random variables

{Y = E[X |B] | B ⊂ A,B is σ − algebra }

is uniformly integrable.

Proof. Given ǫ > 0. Choose δ > 0 such that for all A ∈ A, P[A] < δ
implies E[|X |;A] < ǫ. Choose further K ∈ R such that K−1 · E[|X |] < δ.
By Jensen’s inequality, Y = E[X |B] satisfies

E[|Y |] = E[|E[X |B]|] ≤ E[E[|X ||B]] ≤ E[|X |] .

Therefore
K · P[|Y | > K] ≤ E[|Y |] ≤ E[|X |] ≤ δ ·K

so that P[|Y | > K] ≤ δ. By definition of conditional expectation, |Y | ≤
E[|X ||B] and {|Y | > K } ∈ B

E[|XB|; |XB| > K] ≤ E[|X |; |XB| > K] < ǫ .

�

Definition. Denote by A∞ the σ-algebra generated by
⋃

nAn.

Theorem 3.4.2 (Lévy’s upward theorem). Given X ∈ L1. Then Xn =
E[X |An] is a uniformly integrable martingale and Xn converges in L1 to
X∞ = E[X |A∞].

Proof. The process X is a martingale. The sequence Xn is uniformly in-
tegrable by the above lemma. Therefore X∞ exists almost everywhere by
Doob’s convergence theorem for uniformly integrable martingales, and since
the family Xn is uniformly integrable, the convergence is in L1. We have
to show that X∞ = Y := E[X |A∞].
By proving the claim for the positive and negative part, we can assume
that X ≥ 0 (and so Y ≥ 0). Consider the two measures

Q1(A) = E[X ;A], Q2(A) = E[X∞;A] .

Since E[X∞|An] = E[X |An], we know that Q1 and Q2 agree on the π-
system

⋃

nAn. They agree therefore everywhere on A∞. Define the event
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A = {E[X |A∞] > X∞ } ∈ A∞. Since Q1(A) − Q2(A) = E[E[X |A∞] −
X∞;A] = 0 we have E[X |A∞] ≤ X∞ almost everywhere. Similarly also
X∞ ≤ X |A∞] almost everywhere. �

As an application, we see a martingale proof of Kolmogorov’s 0− 1 law:

Corollary 3.4.3. For any sequence An of independent σ-algebras, the tail σ-
algebra T =

⋂

n Bn with Bn the algebra generated by
⋃

m>nAm is trivial.

Proof. Given A ∈ T , define X = 1A ∈ L∞(T ) and the σ-algebras Cn =
σ(A1, . . . ,An). By Lévy’s upward theorem (3.4.2),

X = E[X |C∞] = lim
n→∞

E[X |Cn] .

But since Cn is independent of An and (8) in Theorem (3.1.4), we have

P[A] = E[X ] = E[X |Cn] → X .

Because X is 0 − 1 valued and X = P[A], it must be constant and so
P[A] = 1 or P[A] = 0. �

Definition. A sequence A−n of σ-algebras A−n satisfying

· · · ⊂ A−n ⊂ A−(n−1) ⊂ · · · ⊂ A−1

is called a downward filtration. Define A−∞ =
⋂

nA−n.

Theorem 3.4.4 (Lévy’s downward theorem). Given a downward filtration
A−n and X ∈ L1. Define X−n = E[X |A−n]. Then X−∞ = limn→∞X−n
converges in L1 and X−∞ = E[X |A−∞].

Proof. Apply Doob’s up-crossing lemma to the uniformly integrable mar-
tingale

Xk,−n ≤ k ≤ −1 :

for all a < b, the number of up-crossings is bounded

Uk[a, b] ≤ (|a|+ ||X ||1)/(b − a) .

This implies in the same way as in the proof of Doob’s convergence theorem
that limn→∞X−n converges almost everywhere.
We show now that X−∞ = E[X |A−∞]: given A ∈ A−∞. We have E[X ;A] =
E[X−n;A] = E[X−∞;A]. The same argument as before shows that X−∞ =
E[X |A−∞]. �
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Lets also look at a martingale proof of the strong law of large numbers.

Corollary 3.4.5. Given Xn ∈ L1 which are IID and have mean m. Then
Sn/n→ m in L1.

Proof. Define the downward filtration A−n = σ(Sn, Sn+1, . . . ).
Since E[X1|A−n] = E[Xi|A−n] = E[Xi|Sn, Sn+1, . . . ] = Xi, and E[X1|An] =
Sn/n. We can apply Lévy’s downward theorem to see that Sn/n converges
in L1. Since the limit X is in T , it is by Kolmogorov’s 0-1 law a constant
c and c = E[X ] = limn→∞ E[Sn/n] = m. �

3.5 Doob’s decomposition of a stochastic process

Definition. A process Xn is increasing, if P[Xn ≤ Xn+1] = 1.

Theorem 3.5.1 (Doob’s decomposition). Let Xn be an An-adapted L1-
process. Then

X = X0 +N +A

where N is a martingale null at 0 and A is a previsible process null at 0.
This decomposition is unique in L1. X is a submartingale if and only if A
is increasing.

Proof. If X has a Doob decomposition X = X0 +N +A, then

E[Xn−Xn−1|An−1] = E[Nn−Nn−1|An]+E[An−An−1|An−1] = An−An−1

which means that

An =

n
∑

k=1

E[Xk −Xk−1|An−1] .

If we define A like this, we get the required decomposition and the sub-
martingale characterization is also obvious. �

Remark. The corresponding result for continuous time processes is deeper
and called Doob-Meyer decomposition theorem. See theorem (4.17.2).
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Lemma 3.5.2. Given s, t, u, v ∈ N with s ≤ t ≤ u ≤ v. If Xn is a L2-
martingale, then

E[(Xt −Xs)(Xv −Xu)] = 0

and

E[X2
n] = E[X2

0 ] +

n
∑

k=1

E[(Xk −Xk−1)
2] .

Proof. Because E[Xv − Xu|Au] = Xu − Xu = 0, we know that Xv − Xu

is orthogonal to L2(Au). The first claim follows since Xt −Xx ∈ L2(Au).
The formula

Xn = X0 +
n
∑

k=1

(Xk −Xk−1)

expresses Xn as a sum of orthogonal terms and Pythagoras theorem gives
the second claim. �

Corollary 3.5.3. A L2-martingale X is bounded in L2 if and only if
∑∞

k=1 E[(Xk −Xk−1)
2] <∞.

Proof.

E[X2
n] = E[X2

0 ]+

n
∑

k=1

E[(Xk−Xk−1)
2] ≤ E[X2

0 ]+

∞
∑

k=1

E[(Xk−Xk−1)
2] <∞ .

If on the other hand, Xn is bounded in L2, then ||Xn||2 ≤ K < ∞ and
∑

k E[(Xk −Xk−1)
2] ≤ K + E[X2

0 ]. �

Theorem 3.5.4 (Doob’s convergence theorem for L2-martingales). Let Xn

be a L2-martingale which is bounded in L2, then there exists X ∈ L2 such
that Xn → X in L2.

Proof. If X is bounded in L2, then, by monotonicity of the norm ||X ||1 ≤
||X ||2, it is bounded in L1 so that by Doob’s convergence theorem,Xn → X
almost everywhere for some X . By Pythagoras and the previous corol-
lary (3.5.3), we have

E[(X −Xn)
2] ≤

∑

k≥n+1

E[(Xk −Xk−1)
2] → 0
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so that Xn → X in L2. �

Definition. Let Xn be a martingale in L2 which is null at 0. The conditional
Jensen’s inequality (3.1.4) shows that X2

n is a submartingale. Doob’s de-
composition theorem allows to write X2 = N+A, where N is a martingale
and A is a previsible increasing process. Define A∞ = limn→∞ An point
wise, where the limit is allowed to take the value ∞ also. One writes also
〈X〉 for A so that

X2 = N + 〈X〉 .

Lemma 3.5.5. Assume X is a L2-martingale. X is bounded in L2 if and
only if E[〈X〉∞] <∞.

Proof. From X2 = N +A, we get E[X2
n] = E[An] since for a martingale N ,

the equality E[Nn] = E[N0] holds and N is null at 0. Therefore, X is in L2

if and only if E[A∞] <∞ since An is increasing. �

We can now relate the convergence of the process Xn to the finiteness of
A∞ = 〈X〉∞:

Proposition 3.5.6. Assume ||Xn − Xn−1||∞ ≤ K for all n. Then
limn→∞Xn(ω) converges if and only if A∞ <∞.

Proof. a) We first show that A∞(ω) < ∞ implies that limn→∞Xn(ω)
converges. Because the process A is previsible, we can define for every k
a stopping time S(k) = inf{n ∈ N | An+1 > k }. The assumption shows
that for almost all ω there is a k such that S(k) = ∞. The stopped process
AS(k) is also previsible because for B ∈ BR and n ∈ N,

{An∧S(k) ∈ B } = C1 ∪ C2

with

C1 =

n−1
⋃

i=0

{S(k) = i;Ai ∈ B} ∈ An−1

C2 = {An ∈ B} ∩ {S(k) ≤ n− 1}c ∈ An−1 .

Now, since
(XS(k))2 −ASk = (X2 −A)S(k)

is a martingale, we see that 〈XS(k)〉 = AS(k). The later process AS(k)

is bounded by k so that by the above lemma XS(k) is bounded in L2
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and limnX
S(k)(ω) = limnXn∧S(k)(ω) exists almost everywhere. But since

S(k) = ∞ almost everywhere, we also know that limnXn(ω) exists for
almost all ω.
b) Now we prove that the existence of limn→∞Xn(ω) implies that A∞(ω) <
∞ almost everywhere. Suppose the claim is wrong and that

P[A∞ = ∞, sup
n

|Xn| <∞ ] > 0 .

Then,

P[T (c) = ∞;A∞ = ∞ ] > 0 ,

where T (c) is the stopping time

T (c) = inf{n | |Xn| > c } .

Now

E[X2
T (c)∧n −AT (c)∧n] = 0

and XT (c) is bounded by c+K. Thus

E[AT (c)∧n] ≤ (c+K)2

for all n. This is a contradiction to P[A∞ = ∞, supn |Xn| <∞] > 0. �

Example. If Yk is a sequence of independent random variables of zero mean
and standard deviation σk. Assume ||Yk||∞ ≤ K are bounded. Define the
process Xn =

∑n
k=1 Yk. Write S2

n = Nn + An with An =
∑n

k=1 E[Y
2
k ] =

∑n
k=1 σ

2
k andNn = S2

n−An. In this case An is a numerical sequence and not
a random variable. The last proposition implies that Xn converges almost
everywhere if and only if

∑n
k=1 σ

2
k converges. Of course we know this also

from Pythagoras which assures that Var[Xn] =
∑n
k=1 Var[Yk] =

∑n
k=1 σ

2
k

and implies that Xn converges in L2.

Theorem 3.5.7 (A strong law for martingales). Let X be a L2-martingale
zero at 0 and let A = 〈X〉. Then

Xn

An
→ 0

almost surely on {A∞ = ∞ }.

Proof. (i) Césaro’s lemma: Given 0 = b0 < b1 ≤ . . . , bn ≤ bn+1 → ∞ and a
sequence vn ∈ R which converges vn → v∞, then 1

bn

∑n
k=1(bk − bk−1)vk →

v∞.
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Proof. Let ǫ > 0. Choose m such that vk > v∞ − ǫ if k ≥ m. Then

lim inf
n→∞

1

bn

n
∑

k=1

(bk − bk−1)vk ≥ lim inf
n→∞

1

bn

m
∑

k=1

(bk − bk−1)vk

+
bn − bm
bn

(v∞ − ǫ)

≥ 0 + v∞ − ǫ

Since this is true for every ǫ > 0, we have lim inf ≥ v∞. By a similar
argument lim sup ≥ v∞. �

(ii) Kronecker’s lemma: Given 0 = b0 < b1 ≤ . . . , bn ≤ bn+1 → ∞ and a se-
quence xn of real numbers. Define sn = x1+ · · ·+xn. Then the convergence
of un =

∑n
k=1 xk/bk implies that sn/bn → 0.

Proof. We have un − un−1 = xn/bn and

sn =

n
∑

k=1

bk(uk − uk−1) = bnun −
n
∑

k=1

(bk − bk−1)uk−1 .

Césaro’s lemma (i) implies that sn/bn converges to u∞ − u∞ = 0. �

(iii) Proof of the claim: since A is increasing and null at 0, we have An > 0
and 1/(1+An) is bounded. Since A is previsible, also 1/(1+An) is previsible,
we can define the martingale

Wn = (

∫

(1 +A)−1dX)n =
n
∑

k=1

Xk −Xk−1

1 +Ak
.

Moreover, since (1 +An) is An−1-measurable, we have

E[(Wn−Wn−1)
2|An−1] = (1+An)

−2(An−An−1) ≤ (1+An−1)
−1−(1+An)

−1

almost surely. This implies that 〈W 〉∞ ≤ 1 so that limn→∞Wn exists
almost surely. Kronecker’s lemma (ii) applied point wise implies that on
{A∞ = ∞}

lim
n→∞

Xn/(1 +An) = lim
n→∞

Xn/An → 0 .

�

3.6 Doob’s submartingale inequality

We still follow closely [113]:

Theorem 3.6.1 (Doob’s submartingale inequality). For any non-negative
submartingale X and every ǫ > 0

ǫ · P[ sup
1≤k≤n

Xk ≥ ǫ] ≤ E[Xn; { sup
1≤k≤n

Xk ≥ ǫ}] ≤ E[Xn] .



164 Chapter 3. Discrete Stochastic Processes

Proof. The set A = {sup1≤k≤nXk ≥ ǫ} is a disjoint union of the sets

A0 = {X0 ≥ ǫ } ∈ A0

Ak = {Xk ≥ ǫ } ∩ (
k−1
⋂

i=0

Aci ) ∈ Ak .

Since X is a submartingale, and Xk ≥ ǫ on Ak we have for k ≤ n

E[Xn;Ak] ≥ E[Xk;Ak] ≥ ǫP[Ak] .

Summing up from k = 0 to n gives the result. �

We have seen the following result already as part of theorem (2.11.1). Here
it appears as a special case of the submartingale inequality:

Theorem 3.6.2 (Kolmogorov’s inequality). Given Xn ∈ L2 IID with
E[Xi] = 0 and Sn =

∑n
k=1Xk. Then for ǫ > 0,

P[ sup
1≤k≤n

|Sk| ≥ ǫ] ≤ Var[Sn]

ǫ2
.

Proof. Sn is a martingale with respect to An = σ(X1, X2, . . . , Xn). Because
u(x) = x2 is convex, S2

n is a submartingale. Now apply the submartingale
inequality (3.6.1). �

Here is an other proof of the law of iterated logarithm for independent
N(0, 1) random variables.

Theorem 3.6.3 (Special case of law of iterated logarithm). Given Xn IID
with standard normal distribution N(0, 1). Then lim supn→∞ Sn/Λ(n) = 1.

Proof. We will use for

1− Φ(x) =

∫ ∞

x

φ(y) dy =

∫ ∞

x

(2π)−1/2 exp(−y2/2) dy

the elementary estimates

(x+ x−1)−1φ(x) ≤ 1− Φ(x) ≤ x−1φ(x) .
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(i) Sn is a martingale relative to An = σ(X1, . . . , Xn). The function x 7→
eθx is convex on R so that eθSn is a submartingale. The submartingale
inequality (3.6.1) gives

P[ sup
1≤k≤n

Sk ≥ ǫ] = P[ sup
1≤k≤n

eθSk ≥ eθǫ] ≤ e−θǫE[eθSn ] = e−θǫeθ
2·n/2 .

For given ǫ > 0, we get the best estimate for θ = ǫ/n and obtain

P[ sup
1≤k≤n

Sk > ǫ] ≤ e−ǫ
2/(2n) .

(ii) Given K > 1 (close to 1). Choose ǫn = KΛ(Kn−1). The last inequality
in (i) gives

P[ sup
1≤k≤Kn

Sk ≥ ǫn] ≤ exp(−ǫ2n/(2Kn)) = (n− 1)−K(logK)−K .

The Borel-Cantelli lemma assures that for large enough n and Kn−1 ≤ k ≤
Kn

Sk ≤ sup
1≤k≤Kn

Sk ≤ ǫn = KΛ(Kn−1) ≤ KΛ(k)

which means for K > 1 almost surely

lim sup
k→∞

Sk
Λ(k)

≤ K .

By taking a sequence of K’s converging down to 1, we obtain almost surely

lim sup
k→∞

Sk
Λ(k)

≤ 1 .

(iii) Given N > 1 (large) and δ > 0 (small). Define the independent sets

An = {S(Nn+1)− S(Nn) > (1− δ)Λ(Nn+1 −Nn)} .

Then
P[An] = 1− Φ(y) = (2π)−1/2(y + y−1)−1e−y

2/2

with y = (1−δ)(2 log log(Nn−1−Nn))1/2. Since P[An] is up to logarithmic

terms equal to (n logN)−(1−δ)2 , we have
∑

n P[An] = ∞. Borel-Cantelli
shows that P[lim supnAn] = 1 so that

S(Nn+1) > (1 − δ)Λ(Nn+1 −Nn) + S(Nn) .

By (ii), S(Nn) > −2Λ(Nn) for large n so that for infinitely many n, we
have

S(Nn+1) > (1− δ)Λ(Nn+1 −Nn)− 2Λ(Nn) .

It follows that

lim sup
n

Sn
Λn

≥ lim sup
n

S(Nn+1)

Λ(Nn+1)
≥ (1− δ)(1 − 1

N
)1/2 − 2N−1/2 .

�
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3.7 Doob’s Lp inequality

Lemma 3.7.1. (Corollary of Hölder inequality) Fix p > 1 and q satisfying
p−1 + q−1 = 1. Given X,Y ∈ Lp satisfying

ǫP[|X | ≥ ǫ] ≤ E[|Y |; |X | ≥ ǫ]

∀ǫ > 0, then ||X ||p ≤ q · ||Y ||p.

Proof. Integrating the assumption multiplied with pǫp−2 gives

L =

∫ ∞

0

pǫp−1P[|X | ≥ ǫ] dǫ ≤
∫ ∞

0

pǫp−2E[|Y |; |X | ≥ ǫ] dǫ =: R .

By Fubini’s theorem, the the left hand side is

L =

∫ ∞

0

E[pǫp−11{|X|≥ǫ}] dǫ = E[

∫ ∞

0

pǫp−11{|X|≥ǫ}dǫ] = E[|X |p] .

Similarly, the right hand side is R = E[q · |X |p−1|Y |]. With Hölder’s in-
equality, we get

E[|X |p] ≤ E[q|X |p−1|Y |] ≤ q||Y ||p · |||X |p−1||q .

Since (p− 1)q = p, we can substitute |||X |p−1||q = E[|X |p]1/q on the right
hand side, which gives the claim. �

Theorem 3.7.2 (Doob’s Lp inequality). Given a non-negative submartingale
X which is bounded in Lp. Then X∗ = supnXn is in Lp and satisfies

||X∗||p ≤ q · sup
n

||Xn||p .

Proof. Define X∗
n = sup1≤k≤nXk for n ∈ N. From Doob’s submartingale

inequality (3.6.1) and the above lemma (3.7.1), we see that

||X∗
n||p ≤ q||Xn||p ≤ q sup

n
||Xn||p .

�
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Corollary 3.7.3. Given a non-negative submartingale X which is bounded
in Lp. Then X∞ = limn→∞Xn exists in Lp and ||X∞||p = limn→∞ ||Xn||p .

Proof. The submartingale X is dominated by the element X∗ in the Lp-
inequality. The supermartingale −X is bounded in Lp and so bounded in
L1. We know therefore that X∞ = limn→∞Xn exists almost everywhere.
From ||Xn −X∞||pp ≤ (2X∗)p ∈ Lp and the dominated convergence theo-
rem (2.4.3) we deduce Xn → X∞ in Lp. �

Corollary 3.7.4. Given a martingale Y bounded in Lp and X = |Y |. Then

X∞ = lim
n→∞

Xn

exists in Lp and ||X∞||p = limn→∞ ||Xn||p .

Proof. Use the above corollary for the submartingale X = |Y |. �

Theorem 3.7.5 (Kakutani’s theorem). Let Xn be a non-negative indepen-
dent L1 process with E[Xn] = 1 for all n. Define S0 = 1 and Sn =

∏n
k=1Xk.

Then S∞ = limn Sn exists, because Sn is a nonnegative L1 martingale.

Then Sn is uniformly integrable if and only if
∏∞
n=1 E[X

1/2
n ] > 0.

Proof. Define an = E[X
1/2
n ]. The process

Tn =
X

1/2
1

a1

X
1/2
2

a2
· · · X

1/2
n

an

is a martingale. We have E[T 2
n ] = (a1a2 · · · an)−2 ≤ (

∏

n an)
−1 <∞ so that

T is bounded in L2, By Doob’s L2-inequality

E[sup
n

|Sn|] ≤ E[sup
n

|Tn|2] ≤ 4 sup
n

E[|Tn|2] <∞

so that S is dominated by S∗ = supn |Sn| ∈ L1. This implies that S is
uniformly integrable.

If Sn is uniformly integrable, then Sn → S∞ in L1. We have to show that
∏∞
n=1 an > 0. Aiming to a contradiction, we assume that

∏

n an = 0. The
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martingale T defined above is a nonnegative martingale which has a limit
T∞. But since

∏

n an = 0 we must then have that S∞ = 0 and so Sn → 0
in L1. This is not possible because E[Sn] = 1 by the independence of the
Xn. �

Here are examples, where martingales occur in applications:

Example. This example is a primitive model for the Stock and Bond mar-
ket. Given a < r < b <∞ real numbers. Define p = (r − a)/(b− a). Let ǫn
be IID random variables taking values 1,−1 with probability p respectively
1−p. We define a process Bn modeling bonds with fixed interest rate f and
a process Sn representing stocks with fluctuating interest rates as follows:

Bn = (1 + r)nBn−1, B0 = 1 ,

Sn = (1 +Rn)Sn−1, S0 = 1 ,

with Rn = (a + b)/2 + ǫn(a − b)/2. Given a sequence An, your portfolio,
your fortune is Xn and satisfies

Xn = (1 + r)Xn−1 +AnSn−1(Rn − r) .

We can write Rn − r = 1
2 (b− a)(Zn − Zn−1) with the martingale

Zn =

n
∑

k=1

(ǫk − 2p+ 1) .

The process Yn = (1 + r)−nXn satisfies then

Yn − Yn−1 = (1 + r)−nAnSn−1(Rn − r)

=
1

2
(b − a)(1 + r)−nAnSn−1(Zn − Zn−1)

= Cn(Zn − Zn−1)

showing that Y is the stochastic integral
∫

C dZ. So, if the portfolio An is
previsible which means by definition that it is An−1 measurable, then Y is
a martingale.

Example. Let X , X1, X2 . . . be independent random variables satisfying
that the law of X is N(0, σ2) and the law of Xk is N(0, σ2

k). We define the
random variables

Yk = X +Xk

which we consider as a noisy observation of the random variable X . Define
An = σ(X1, . . . , Xn) and the martingale

Mn = E[X |An] .

By Doob’s martingale convergence theorem (3.5.4), we know that Mn con-
verges in L2 to a random variable M∞. One can show that

E[(X −Mn)
2] = (σ−2 +

n
∑

k=1

σ−2
k )−1 .

This implies that X = M∞ if and only if
∑

n σ
−2
n = ∞. If the noise grows

too much, for example for σn = n, then we can not recover X from the
observations Yk.
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3.8 Random walks

We consider the d-dimensional lattice Zd where each point has 2d neighbors.
A walker starts at the origin 0 ∈ Zd and makes in each time step a random
step into one of the 2d directions. What is the probability that the walker
returns back to the origin?

Definition. Define a sequence of IID random variablesXn which take values
in

I = {e ∈ Zd | |e| =
d

∑

i=1

|ei| = 1 }

and which have the uniform distribution defined by P[Xn = e] = (2d)−1

for all e ∈ I. The random variable Sn =
∑n

i=1Xi with S0 = 0 describes
the position of the walker at time n. The discrete stochastic process Sn is
called the random walk on the lattice Zd.

Figure. A random walk sample
path S1(ω), . . . , Sn(ω) in the lat-
tice Z2 after 2000 steps. Bn(ω)
is the number of revisits of the
starting points 0.

As a probability space, we can take Ω = IN with product measure νN,
where ν is the measure on E, which assigns to each point e the probability
ν({e}) = (2d)−1. The random variables Xn are then defined by Xn(ω) =
ωn. Define the sets An = {Sn = 0 } and the random variables

Yn = 1An .

If the walker has returned to position 0 ∈ Zd at time n, then Yn = 1,
otherwise Yn = 0. The sum Bn =

∑n
k=0 Yk counts the number of visits of

the origin 0 of the walker up to time n and B =
∑∞
k=0 Yk counts the total

number of visits at the origin. The expectation

E[B] =

∞
∑

n=0

P[Sn = 0]

tells us how many times the walker is expected to return to the origin. We
write E[B] = ∞ if the sum diverges. In this case, the walker returns back
to the origin infinitely many times.
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Theorem 3.8.1 (Polya). E[B] = ∞ for d = 1, 2 and E[B] <∞ for d > 2.

Proof. Fix n ∈ N and define a(n)(k) = P[Sn = k] for k ∈ Zd. Because
the walker can reach in time n only a bounded region, the function a(n) :
Zd → R is zero outside a bounded set. We can therefore define its Fourier
transform

φSn(x) =
∑

k∈Zd

a(n)(k)e2πik·x

which is smooth function on Td = Rd/Zd. It is the characteristic function
of Sn because

E[eixSn ] =
∑

k∈Zd

P[Sn = k]eik·x .

The characteristic function φX of Xk is

φX(x) =
1

2d

∑

|j|=1

e2πixj =
1

d

d
∑

i=1

cos(2πxi) .

Because the Sn is a sum of n independent random variables Xj

φSn = φX1(x)φX2 (x) . . . φXn(x) =
1

dn
(

d
∑

i=1

cos(2πxi))
n .

Note that φSn(0) = P[Sn = 0].

We now show that E[B] =
∑

n≥0 φSn(0) is finite if and only if d < 3. The

Fourier inversion formula using the normalized Volume mesure dx on T3

gives
∑

n

P[Sn = 0] =

∫

Td

∞
∑

n=0

φnX(x) dx =

∫

Td

1

1− φX(x)
dx .

A Taylor expansion φX(x) = 1−∑

j

x2
j

2 (2π)2 + . . . shows

1

2
· (2π)

2

2d
|x|2 ≤ 1− φX(x) ≤ 2 · (2π)

2

2d
|x|2 .

The claim of the theorem follows because the integral

∫

{|x|<ǫ}

1

|x|2 dx

over the ball of radius ǫ in Rd is finite if and only if d ≥ 3. �
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Corollary 3.8.2. The walker returns to the origin infinitely often almost
surely if d ≤ 2. For d ≥ 3, almost surely, the walker or rather bird returns
only finitely many times to zero and P[limn→∞ |Sn| = ∞] = 1.

Proof. If d > 2, then A∞ = lim supnAn is the subset of Ω, for which the
particles returns to 0 infinitely many times. Since E[B] =

∑∞
n=0 P[An],

the Borel-Cantelli lemma gives P[A∞] = 0 for d > 2. The particle returns
therefore back to 0 only finitely many times and in the same way it visits
each lattice point only finitely many times. This means that the particle
eventually leaves every bounded set and converges to infinity.
If d ≤ 2, let p be the probability that the random walk returns to 0:

p = P[
⋃

n

An] .

Then pm−1 is the probability that there are at least m visits in 0 and the
probability is pm−1−pm = pm−1(1−p) that there are exactly m visits. We
can write

E[B] =
∑

m≥1

mpm−1(1 − p) =
1

1− p
.

Because E[B] = ∞, we know that p = 1. �

The use of characteristic functions allows also to solve combinatorial prob-
lems like to count the number of closed paths starting at zero in the graph:

Proposition 3.8.3. There are

(2d)n
∫

Td

(

d
∑

k=1

cos(2πxk))
n dx1 · · · dxd

closed paths of length n which start at the origin in the lattice Zd.

Proof. If we know the probability P[Sn = 0] that a path returns to 0 in n
step, then (2d)nP[Sn = 0] is the number of closed paths in Zd of length n.
But P[Sn = 0] is the zero’th Fourier coefficient

∫

Td

φSn(x) dx =

∫

Td

(

d
∑

k=1

cos(2πxk))
n dx

of φSn , where dx = dx1 · · · dxd. �
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Example. In the case d = 1, we have

∫ 1

0

22n cos2n(2πx) dx =

(

2n
n

)

closed paths of length 2n starting at 0. We know that also because

P[S2n = 0] =

(

2n
n

)

1

(2d)n
.

For n = 2 for example, we have 22
∫ 1

0
cos(2πx)2 dx = 2 closed paths of

length 2 which start at 0 in Z.

The lattice Zd can be generalized to an arbitrary graph G which is a regular
graph that is a graph, where each vertex has the same number of neighbors.
A convenient way is to take as the graph the Cayley graph of a discrete
group G with generators a1, . . . , ad. The random walk can also be studied
on a general graph. If the degree is d at a point x, then the walker choses
a random direction with probability 1/d.

Corollary 3.8.4. If G is the Cayley graph of an Abelian group G then the
random walk on G is recurrent if and only at most two of the generators
have infinite order.

Proof. By the structure theorem for Abelian groups, an Abelian group G
is isomorphic to Zk × Zn1 × . . .Znd

. The characteristic function of Xn is a

function on the dual group Ĝ
∞
∑

n=0

P[Sn = 0] =
∞
∑

n=0

∫

ˆG
φSn(x) dx =

∞
∑

n=0

∫

ˆG
φnX(x) dx =

∫

ˆG
1

1− φX(x)
dx

is finite if and only if Ĝ contains a three dimensional torus which means
k > 2. �

The recurrence properties on non-Abelian groups is more subtle, because
characteristic functions loose then some of their good properties.

Example. An other generalization is to add a drift by changing the prob-
ability distribution ν on I. Given pj ∈ (0, 1) with

∑

|j|=1 pj = 1. In this
case

φX(x) =
∑

|j|=1

pje
2πixj .

We have recurrence if and only if
∫

Td

1

1− φX(x)
dx = ∞ .



3.8. Random walks 173

Take for example the case d = 1 with drift parameterized by p ∈ (0, 1).
Then

φX(x) = pe2πix + (1− p)e−2πix = cos(2πx) + i(2p− 1) sin(2πx) .

which shows that
∫

Td

1

1− φX(x)
dx <∞

if p 6= 1/2. A random walk with drift on Zd will almost certainly not return
to 0 infinitely often.

Example. An other generalization of the random walk is to take identically
distributed random variables Xn with values in I, which need not to be
independent. An example which appears in number theory in the case d = 1
is to take the probability space Ω = T1 = R/Z, an irrational number α and
a function f which takes each value in I on an interval [ k2d ,

k+1
2d ). The

random variables Xn(ω) = f(ω + nα) define an ergodic discrete stochastic
process but the random variables are not independent. A random walk
Sn =

∑n
k=1Xk with random variables Xk which are dependent is called a

dependent random walk.

Figure. If Yk are IID random
variables with uniform distri-
bution in [0, a], then Zn =
∑n

k=1 Yk mod 1 are dependent.
Define Xk = (1, 0) if Zk ∈
[0, 1/4), Xk = (−1, 0) if Zk ∈
[1/4, 1/2), Xk = (0, 1) if Zk ∈
[1/2, 3/4) and Xk = (0,−1) if
Zk ∈ [3/4, 1). Also Xk are no
more independent. For small a,
there can belong intervals, where
Xk is the same because Zk stays
in the same quarter interval. The
picture shows a typical path of
the process Sn =

∑n
k=1Xk.

Example. An example of a one-dimensional dependent random walk is the
problem of ”almost alternating sums” [52]. Define on the probability space
Ω = ([0, 1],A, dx) the random variables Xn(x) = 21[0,1/2](x + nα) − 1,
where α is an irrational number. This produces a symmetric random walk,
but unlike for the usual random walk, where Sn(x) grows like

√
n, one sees

a much slower growth Sn(0) ≤ log(n)2 for almost all α and for special
numbers like the golden ratio (

√
5+1)/2 or the silver ratio

√
2+1 one has

for infinitely many n the relation

a · log(n) + 0.78 ≤ Sn(0) ≤ a · log(n) + 1
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with a = 1/(2 log(1+
√
2)). It is not known whether Sn(0) grows like log(n)

for almost all α.

Figure. An almost periodic ran-
dom walk in one dimensions. In-
stead of flipping coins to decide
whether to go up or down, one
turns a wheel by an angle α after
each step and goes up if the wheel
position is in the right half and
goes down if the wheel position is
in the left half. While for periodic
α the growth of Sn is either lin-
ear (like for α = 0), or zero (like
for α = 1/2), the growth for most
irrational α seems to be logarith-
mic.

3.9 The arc-sin law for the 1D random walk

Definition. Let Xn denote independent {−1, 1 }-valued random variables
with P[Xn = ±1] = 1/2 and let Sn =

∑n
k=1Xk be the random walk. We

have seen that it is a martingale with respect to Xn. Given a ∈ Z, we define
the stopping time

Ta = min{n ∈ N | Sn = a } .

Theorem 3.9.1 (Reflection principle). For integers a, b > 0, one has

P[a+ Sn = b , T−a ≤ n] = P[Sn = a+ b] .

Proof. The number of paths from a to b passing zero is equal to the number
of paths from −a to b which in turn is the number of paths from zero to
a+ b. �
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Figure. The proof of the reflec-
tion principle: reflect the part of
the path above 0 at the line 0. To
every path which goes from a to
b and touches 0 there corresponds
a path from −a to b.

The reflection principle allows to compute the distribution of the random
variable T−a:

Theorem 3.9.2 (Ruin time). We have the following distribution of the stop-
ping time:
a) P[T−a ≤ n] = P[Sn ≤ −a] + P [Sn > a].
b) P[T−a = n] = a

nP[Sn = a].

Proof. a) Use the reflection principle in the third equality:

P[T−a ≤ n] =
∑

b∈Z

P[T−a ≤ n, a+ Sn = b]

=
∑

b≤0

P[a+ Sn = b] +
∑

b>0

P[T−a ≤ n, a+ Sn = b]

=
∑

b≤0

P[a+ Sn = b] +
∑

b>0

P[Sn = a+ b]

= P[Sn ≤ −a] + P[Sn > a]

b) From

P[Sn = a] =

(

n
a+n
2

)

we get

a

n
P[Sn = a] =

1

2
(P[Sn−1 = a− 1]− P[Sn−1 = a+ 1]) .

Also

P[Sn > a]− P[Sn−1 > a] = P[Sn > a , Sn−1 ≤ a]

+P[Sn > a , Sn−1 > a]− P[Sn−1 > a]

=
1

2
(P[Sn−1 = a]− P[Sn−1 = a+ 1])
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and analogously

P[Sn ≤ −a]− P[Sn−1 ≤ −a] = 1

2
(P[Sn−1 = a− 1]− P[Sn−1 = a]) .

Therefore, using a)

P[T−a = n] = P[T−a ≤ n]− P[T−a ≤ n− 1]

= P[Sn ≤ −a]− P[Sn−1 ≤ −a]
+ P[Sn > a]− P[Sn−1 > a]

=
1

2
(P[Sn−1 = a]− P[Sn−1 = a+ 1])

+
1

2
(P[Sn−1 = a− 1]− P[Sn−1 = a])

=
1

2
(P[Sn−1 = a− 1]− P[Sn−1 = a+ 1]) =

a

n
P[Sn = a]

�

Theorem 3.9.3 (Ballot theorem).

P[Sn = a , S1 > 0, . . . , Sn−1 > 0] =
a

n
· P[Sn = a] .

Proof. When reversing time, the number of paths from 0 to a of length n
which do no more hit 0 is the number of paths of length n which start in
a and for which T−a = n. Now use the previous theorem

P[T−a = n] =
a

n
P[Sn = a] .

�

Corollary 3.9.4. The distribution of the first return time is

P[T0 > 2n] = P[S2n = 0] .

Proof.

P[T0 > 2n] =
1

2
P[T−1 > 2n− 1] +

1

2
P[T1 > 2n− 1]

= P[T−1 > 2n− 1] ( by symmetry)

= P[S2n−1 > −1 and S2n−1 ≤ 1]

= P[S2n−1 ∈ {0, 1}]
= P[S2n−1 = 1] = P[S2n = 0] .
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�

Remark. We see that limn→∞ P[T0 > 2n] = 0. This restates that the
random walk is recurrent. However, the expected return time is very long:

E[T0] =

∞
∑

n=0

nP[T0 = n] =

∞
∑

n=0

P[T0 > n] =

∞
∑

n=0

P[Sn = 0] = ∞

because by the Stirling formula n! ∼ nne−n
√
2πn, one has

(

2n
n

)

∼
22n/

√
πn and so

P[S2n = 0] =

(

2n
n

)

1

22n
∼ (πn)−1/2 .

Definition. We are interested now in the random variable

L(ω) = max{0 ≤ n ≤ 2N | Sn(ω) = 0 }

which describes the last visit of the random walk in 0 before time 2N . If
the random walk describes a game between two players, who play over a
time 2N , then L is the time when one of the two players does no more give
up his leadership.

Theorem 3.9.5 (Arc Sin law). L has the discrete arc-sin distribution:

P[L = 2n] =
1

22N

(

2n
n

)(

2N − 2n
N − n

)

and for N → ∞, we have

P[
L

2N
≤ z] → 2

π
arcsin(

√
z) .

Proof.

P[L = 2n] = P[S2n = 0] · P[T0 > 2N − 2n] = P[S2n = 0] · P[S2N−2n = 0]

which gives the first formula. The Stirling formula gives P[S2k = 0] ∼ 1√
πk

so that

P[L = 2k] =
1

π

1
√

k(N − k)
=

1

N
f(
k

N
)

with

f(x) =
1

π
√

x(1 − x)
.
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It follows that

P[
L

2N
≤ z] →

∫ z

0

f(x) dx =
2

π
arcsin(

√
z) .

�
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Figure. The distribution function
P[L/2N ≤ z] converges in the
limit N → ∞ to the function
2 arcsin(

√
z)/π.
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Figure. The density function of
this distribution in the limit N →
∞ is called the arc-sin distribu-
tion.

Remark. From the shape of the arc-sin distribution, one has to expect that
the winner takes the final leading position either early or late.

Remark. The arc-sin distribution is a natural distribution on the interval
[0, 1] from the different points of view. It belongs to a measure which is
the Gibbs measure of the quadratic map x 7→ 4 · x(1 − x) on the unit
interval maximizing the Boltzmann-Gibbs entropy. It is a thermodynamic
equilibrium measure for this quadratic map. It is the measure µ on the
interval [0, 1] which minimizes the energy

I(µ) = −
∫ 1

0

∫ 1

0

log |E − E′| dµ(E) dµ(E′) .

One calls such measures also potential theoretical equilibrium measures.

3.10 The random walk on the free group

Definition. The free group Fd with d generators is the set of finite words
w written in the 2d letters

A = {a1, a2, . . . , ad, a−1
1 , a−1

2 , . . . , a−1
d }
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modulo the identifications aia
−1
i = a−1

i ai = 1. The group operation is
concatenating words v ◦w = vw. The inverse of w = w1w2 · · ·wn is w−1 =
w−1
n · · ·w−1

2 w−1
1 . Elements w in the group Fd can be uniquely represented

by reduced words obtained by deleting all words vv−1 in w. The identity
e in the group Fd is the empty word. We denote by l(w) the length of the
reduced word of w.

Definition. Given a free groupG with generatorsA and letXk be uniformly
distributed random variables with values in A. The stochastic process Sn =
X1 · · ·Xn is called the random walk on the group G. Note that the group
operation Xk needs not to be commutative. The random walk on the free
group can be interpreted as a walk on a tree, because the Cayley graph of
the group Fd with generators A contains no non-contractible closed circles.

Figure. Part of the Cayley graph
of the free group F2 with two gen-
erators a, b. It is a tree. At ev-
ery point, one can go into 4 dif-
ferent directions. Going into one
of these directions corresponds to
multiplying with a, a−1, b or b−1.

Definition. Define for n ∈ N

rn = P[Sn = e , S1 6= e, S2 6= e, . . . Sn−1 6= e]

which is the probability of returning for the first time to e if one starts at
e. Define also for n ∈ N

mn = P[Sn = e]

with the convention m(0) = 1. Let r and m be the probability generating
functions of the sequences rn and mn:

m(x) =

∞
∑

n=0

mnx
n, r(x) =

∞
∑

n=0

rnx
n .

These sums converge for |x| < 1.

Lemma 3.10.1. (Feller)

m(x) =
1

1− r(x)
.
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Proof. Let T be the stopping time

T = min{n ∈ N | Sn = e} .
With P[T = n] = rn, the function r(x) =

∑∞
n=1 rnx

n is the probability
generating function of T . The probability generating function of a sum in-
dependent random variables is the product of the probability generating
functions. Therefore, if Ti are independent random variables with distribu-
tion T , then

∑n
i=1 Ti has the probability generating function x 7→ rn(x).

We have
∞
∑

n=0

mnx
n =

∞
∑

n=0

P[Sn = e]xn

=

∞
∑

n=0

∑

0≤n1<n2<···<nk

P[Sn1 = e, Sn2 = e, . . . , Snk
= e,

Sn 6= e for n /∈ {n1, . . . , nk }]xn

=

∞
∑

n=0

P[

n
∑

k=1

Tk = n]xn =

∞
∑

n=0

rn(x) =
1

1− r(x)
.

�

Remark. This lemma is true for the random walk on a Cayley graph of any
finitely presented group.

The numbers r2n+1 are zero for odd 2n+1 because an even number of steps
are needed to come back. The values of r2n can be computed by using basic
combinatorics:

Lemma 3.10.2. (Kesten)

r2n =
1

(2d)2n
1

n

(

2n− 2
n− 1

)

2d(2d− 1)2n−1 .

Proof. We have

r2n =
1

(2d)2n
|{w1w2 . . . w2n ∈ G,wk = w1w2 . . . wk 6= e }| .

To count the number of such words, map every word with 2n letters into
a path in Z2 going from (0, 0) to (n, n) which is away from the diagonal
except at the beginning or the end. The map is constructed in the following
way: for every letter, we record a horizontal or vertical step of length 1.
If l(wk) = l(wk−1) + 1, we record a horizontal step. In the other case, if
l(wk) = l(wk−1) − 1, we record a vertical step. The first step is horizontal
independent of the word. There are

1

n

(

2n− 2
n− 1

)
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such paths since by the distribution of the stopping time in the one dimen-
sional random walk

P[T2n−1 = 2n− 1] =
1

2n− 1
· P[S2n−1 = 1]

=
1

2n− 1

(

2n− 1
n

)

=
1

n

(

2n− 2
n− 1

)

.

Counting the number of words which are mapped into the same path, we see
that we have in the first step 2d possibilities and later (2d− 1) possibilities
in each of the n− 1 horizontal step and only 1 possibility in a vertical step.
We have therefore to multiply the number of paths by 2d(2d− 1)2n−1. �

Theorem 3.10.3 (Kesten). For the free group Fd, we have

m(x) =
2d− 1

(d− 1) +
√

d2 − (2d− 1)x2
.

Proof. Since we know the terms r2n we can compute

r(x) =
d−

√

d2 − (2d− 1)x2

2d− 1

and get the claim with Feller’s lemma m(x) = 1/(1− r(x)). �

Remark. The Cayley graph of the free group is also called the Bethe lattice.
One can read of from this formula that the spectrum of the free Laplacian
L : l2(Fd) → l2(Fd) on the Bethe lattice given by

Lu(g) =
∑

a∈A
u(g + a)

is the whole interval [−a, a] with a = 2
√
2d− 1.

Corollary 3.10.4. The random walk on the free group Fd with d generators
is recurrent if and only if d = 1.

Proof. Denote as in the case of the random walk on Zd with B the random
variable counting the total number of visits of the origin. We have then
again E[B] =

∑

n P[Sn = e] =
∑

nmn = m(1). We see that for d = 1 we
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have m(1) = ∞ and that m(d) <∞ for d > 1. This establishes the analog
of Polya’s result on Zd and leads in the same way to the recurrence:
(i) d = 1: We know that Z1 = F1, and that the walk in Z1 is recurrent.
(ii) d ≥ 2: define the event An = {Sn = e}. Then A∞ = lim supnAn is the
subset of Ω, for which the walk returns to e infinitely many times. Since
for d ≥ 2,

E[B] =

∞
∑

n=0

P[An] = m(1) <∞ ,

the Borel-Cantelli lemma gives P[A∞] = 0 for d > 2. The particle returns
therefore to 0 only finitely many times and similarly it visits each vertex in
Fd only finitely many times. This means that the particle eventually leaves
every bounded set and escapes to infinity. �

Remark. We could say that the problem of the random walk on a discrete
group G is solvable if one can give an algebraic formula for the function
m(x). We have seen that the classes of Abelian finitely generated and free
groups are solvable. Trying to extend the class of solvable random walks
seems to be an interesting problem. It would also be interesting to know,
whether there exists a group such that the function m(x) is transcendental.

3.11 The free Laplacian on a discrete group

Definition. Let G be a countable discrete group and A ⊂ G a finite set
which generates G. The Cayley graph Γ of (G,A) is the graph with edges
G and sites (i, j) satisfying i− j ∈ A or j − i ∈ A.

Remark. We write the composition in G additively even so we do not
assume that G is Abelian. We allow A to contain also the identity e ∈ G.
In this case, the Cayley graph contains two closed loops of length 1 at each
site.

Definition. The symmetric random walk on Γ(G,A) is the process obtained
by summing up independent uniformly distributed (A ∪ A−1)-valued ran-
dom variables Xn. More generally, we can allow the random variables Xn

to be independent but have any distribution on A∪A−1. This distribution
is given by numbers pa = p−1

a ∈ [0, 1] satisfying
∑

a∈A∪A−1 pa = 1.

Definition. The free Laplacian for the random walk given by (G,A, p) is
the linear operator on l2(G) defined by

Lgh = pg−h .

Since we assumed pa = pa−1 , the matrix L is symmetric: Lgh = Lhg and
the spectrum

σ(L) = {E ∈ C | (L − E) is invertible }

is a compact subset of the real line.
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Remark. One can interpret L as the transition probability matrix of the
random walk which is a ”Markov chain”. We will come back to this inter-
pretation later.

Example. G = Z, A = {1}. p = pa = 1/2 for a = 1,−1 and pa = 0 for
a /∈ {1,−1}. The matrix

L =

























. .

. 0 p
p 0 p

p 0 p
p 0 p

p 0 p
p 0 .

. .

























is also called a Jacobi matrix. It acts on the Hilbert space l2(Z) by (Lu)n =
p(un+1 + un−1).

Example. Let G = D3 be the dihedral group which has the presentation
G = 〈a, b|a3 = b2 = (ab)2 = 1〉. The group is the symmetry group of the
equilateral triangle. It has 6 elements and it is the smallest non-Abelian
group. Let us number the group elements with integers {1, 2 = a, 3 =
a2, 4 = b, 5 = ab, 6 = a2b }. We have for example 3 ⋆ 4 = a2b = 6 or
3 ⋆ 5 = a2ab = a3b = b = 4. In this case A = {a, b}, A−1 = {a−1, b} so that
A ∪ A−1 = {a, a−1, b}. The Cayley graph of the group is a graph with 6
vertices. We could take the uniform distribution pa = pb = pa−1 = 1/3 on
A∪A−1, but lets instead chose the distribution pa = pa−1 = 1/4, pb = 1/2,
which is natural if we consider multiplication by b and multiplication by
b−1 as different.

Example. The free Laplacian on D3 with the random walk transition prob-
abilities pa = pa−1 = 1/4, pb = 1/2 is the matrix

L =

















0 1/4 1/4 1/2 0 0
1/4 0 1/4 0 1/2 0
1/4 0 0 0 0 1/2
1/2 0 0 0 1/4 1/4
0 1/2 0 1/4 0 1/4
0 0 1/2 1/4 0 0

















which has the eigenvalues (−3±
√
5)/8, (5±

√
5)/8, 1/4,−3/4.
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Figure. The Cayley graph of the
dihedral group G = D3 is a reg-
ular graph with 6 vertices and 9
edges.

A basic question is: what is the relation between the spectrum of L, the
structure of the group G and the properties of the random walk on G.

Definition. As before, let mn be the probability that the random walk
starting in e returns in n steps to e and let

m(x) =
∑

n∈G
mnx

n

be the generating function of the sequence mn.

Proposition 3.11.1. The norm of L is equal to lim supn→∞(mn)
1/n, the

inverse of the radius of convergence of m(x).

Proof. Because L is symmetric and real, it is self-adjoint and the spectrum
of L is a subset of the real line R and the spectral radius of L is equal to
its norm ||L||.
We have [Ln]ee = mn since [Ln]ee is the sum of products

∏n
j=1 paj each

of which is the probability that a specific path of length n starting and
landing at e occurs.
It remains therefore to verify that

lim sup
n→∞

||Ln||1/n = lim sup
n→∞

[Ln]1/nee

and since the ≥ direction is trivial we have only to show that ≤ direction.
Denote by E(λ) the spectral projection matrix of L, so that dE(λ) is a
projection-valued measure on the spectrum and the spectral theorem says
that L can be written as L =

∫

λ dE(λ). The measure µe = dEee is called
a spectral measure of L. The real number E(λ) − E(µ) is nonzero if and
only if there exists some spectrum of L in the interval [λ, µ). Since

(−1)

λ

∑

n

[Ln]ee
λn

=

∫

R

(E − λ)−1 dk(E)
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can’t be analytic in λ in a point λ0 of the support of dk which is the
spectrum of L, the claim follows. �

Remark. We have seen that the matrix L defines a spectral measure µe on
the real line. It can be defined for any group element g, not only g = e and
is the same measure. It is therefore also the so called density of states of L.
If we think of µ as playing the role of the law for random variables, then
the integrated density of states E(λ) = FL(λ) =

∫

−∞ dµ(λ) plays the role
of the distribution function for real-valued random variables.

Example. The Fourier transform U : l2(Z1) → L2(T1):

û(x) = (Uu)(x) =
∑

n∈Z

une
inx

diagonalises the matrix L for the random walk on Z1

(ULU∗)û(x) = ((UL)(un)(x) = pU(un+1 + un−1)(x)

= p
∑

n∈Z

(un+1 + un−1)e
inx

= p
∑

n∈Z

un(e
i(n−1)x + ei(n+1)x)

= p
∑

n∈Z

un(e
ix + e−ix)einx

= p
∑

n∈Z

un2 cos(x)e
inx

= 2p cos(x) · û(x) .

This shows that the spectrum of ULU∗ is [−1, 1] and because U is an
unitary transformation, also the spectrum of L is in [−1, 1].

Example. Let G = Zd and A = {ei}di=1, where {ei} is the standard bases.
Assume p = pa = 1/(2d). The analogous Fourier transform F : l2(Zd) →
L2(Td) shows that FLF ∗ is the multiplication with 1

d

∑d
j=1 cos(xj). The

spectrum is again the interval [−1, 1].

Example. The Fourier diagonalisation works for any discrete Abelian group
with finitely many generators.

Example. G = Fd the free group with the natural d generators. The spec-
trum of L is

[−
√
2d− 1

d
,

√
2d− 1

d
]

which is strictly contained in [−1, 1] if d > 1.

Remark. Kesten has shown that the spectral radius of L is equal to 1 if
and only if the group G has an invariant mean. For example, for a finite
graph, where L is a stochastic matrix, a matrix for which each column is a
probability vector, the spectral radius is 1 because LT has the eigenvector
(1, . . . , 1) with eigenvalue 1.



186 Chapter 3. Discrete Stochastic Processes

Random walks and Laplacian can be defined on any graph. The spectrum
of the Laplacian on a finite graph is an invariant of the graph but there are
non-isomorphic graphs with the same spectrum. There are known infinite
self-similar graphs, for which the Laplacian has pure point spectrum [64].
There are also known infinite graphs, such that the Laplacian has purely
singular continuous spectrum [98]. For more on spectral theory on graphs,
start with [6].

3.12 A discrete Feynman-Kac formula

Definition. A discrete Schrödinger operator is a bounded linear operator
L on the Hilbert space l2(Zd) of the form

(Lu)(n) =

d
∑

i=1

u(n+ ei)− 2u(n) + u(n− ei) + V (n)u(n) ,

where V is a bounded function on Zd. They are discrete versions of op-
erators L = −∆ + V (x) on L2(Rd), where ∆ is the free Laplacian. Such
operators are also called Jacobi matrices.

Definition. The Schrödinger equation

i~u̇ = Lu, u(0) = u0

is a differential equation in l2(Zd,C) which describes the motion of a com-
plex valued wave function u of a classical quantum mechanical system. The
constant ~ is called the Planck constant and i =

√
−1 is the imaginary

unit. Lets assume to have units where ~ = 1 for simplicity.

Remark. The solution of the Schrödinger equation is

ut = e
t
iLu0 .

The solution exists for all times because the von Neumann series

etL = 1 + tL+
t2L2

2!
+
t3L3

3!
+ · · ·

is in the space of bounded operators.

Remark. It is an achievement of the physicist Richard Feynman to see
that the evolution as a path integral. In the case of differential operators
L, where this idea can be made rigorous by going to imaginary time and
one can write for L = −∆+ V

e−t:u(x) = Ex[e
∫

t
0
V (γ(s)) dsu0(γ(t))] ,

where Ex is the expectation value with respect to the measure Px on the
Wiener space of Brownian motion starting at x.
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Here is a discrete version of the Feynman-Kac formula:

Definition. The Schrödinger equation with discrete time is defined as

i(ut+ǫ − ut) = ǫLut ,

where ǫ > 0 is fixed. We get the evolution

ut+nǫ = (1− iǫL)nut

and we denote the right hand side with L̃nut.

Definition. Denote by Γn(i, j) the set of paths of length n in the graph
G having as edges Zd and sites pairs [i, j] with |i − j| ≤ 1. The graph G
is the Cayley graph of the group Zd with the generators A ∪ A−1 ∪ {e},
where A = {e1, . . . , ed, } is the set of natural generators and where e is the
identity.

Definition. Given a path γ of finite length n, we use the notation

exp(

∫

γ

L) =

n
∏

i=1

Lγ(i),γ(i+1) .

Let Ω is the set of all paths on G and E denotes the expectation with
respect to a measure P of the random walk on G starting at 0.

Theorem 3.12.1 (Discrete Feynman-Kac formula). Given a discrete
Schrödinger operator L. Then

(Lnu)(0) = E0[exp(

∫ n

0

L) u(γ(n))] .

Proof.

(Lnu)(0) =
∑

j

(Ln)0ju(j)

=
∑

j

∑

γ∈Γn(0,j)

exp(

∫ n

0

L) u(j)

=
∑

γ∈Γn

exp(

∫ n

0

L)u(γ(n)) .

�

Remark. This discrete random walk expansion corresponds to the Feynman-
Kac formula in the continuum. If we extend the potential to all the sites of



188 Chapter 3. Discrete Stochastic Processes

the Cayley graph by putting V ([k, k]) = V (k) and V ([k, l]) = 0 for k 6= l,
we can define exp(

∫

γ V ) as the product
∏n
i=1 V ([γ(i), γ(i+ 1)]). Then

(Lnu)(0) = E[exp(

∫ n

0

V )u(γ(n))]

which is formally the Feynman-Kac formula.

In order to compute (L̃nu)(k) with L̃ = (1 − kǫL), we have to take the
potential ṽ defined by

ṽ([k, k]) = 1− iǫv(γ(k)) .

Remark. The Schrödinger equation with discrete time has the disadvantage
that the time evolution of the quantum mechanical system is no more
unitary. This draw-back could be overcome by considering also i~(ut −
ut−ǫ) = ǫLut so that the propagator from ut−ǫ to ut+ǫ is given by the
unitary operator

U = (1− iǫ

~
L)(1 +

iǫ

~
L)−1

which is a Cayley transform of L. See also [50], where the idea is disussed
to use L̃ = arccos(aL), where L has been rescaled such that aL has norm
smaller or equal to 1. The time evolution can then be computed by iterating
the map A : (ψ, φ) 7→ (2aLψ − φ, ψ) on H ⊕H .

3.13 Discrete Dirichlet problem

Also for other partial differential equations, solutions can be described prob-
abilistically. We look here at the Dirichlet problem in a bounded discrete
region. The formula which we derive in this situation holds also in the
continuum limit, where the random walk is replaced by Brownian motion.

Definition. The discrete Laplacian on Z2 is defined as

∆f(n,m) = f(n+1,m)+f(n−1,m)+f(n,m+1)+f(n,m−1)−4f(n,m) .

With the discrete partial derivatives

δ+x f(n,m) =
1

2
(f(n+1,m)−f(n,m)), δ−x f(n,m) =

1

2
(f(n,m)−f(n−1,m)) ,

δ+y f(n,m) =
1

2
(f(n,m+1)−f(n,m)), δ−y f(n,m) =

1

2
(f(n,m)−f(n,m−1)) ,

the Laplacian is the sum of the second derivatives as in the continuous case,
where ∆ = fxx + fyy:

∆ = δ+x δ
−
x + δ+y δ

−
y .

The discrete Laplacian in Z3 is defined in the same way as a discretisation
of ∆ = fxx + fyy + fzz. The setup is analogue in higher dimensions

(∆u)(n) =
1

2d

d
∑

i=1

(u(n+ ei) + u(n− ei)− 2u(n)) ,
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where e1, . . . , ed is the standard basis in Zd.

Definition. A bounded region D in Zd is a finite subset of Zd. Two points
are connected in D if they are connected in Z3. The boundary δD of D
consists of all lattice points in D which have a neighboring lattice point
which is outside D. Given a function f on the boundary δD, the discrete
Dirichlet problem asks for a function u on D which satisfies the discrete
Laplace equation ∆u = 0 in the interior int(D) and for which u = f on the
boundary δD.

Figure. The discrete Dirichlet
problem is a problem in lin-
ear algebra. One algorithm to
solve the problem can be restated
as a probabilistic ”path integral
method”. To find the value of u
at a point x, look at the ”dis-
crete Wiener space” of all paths
γ starting at x and ending at
some boundary point ST (ω) ∈
δD of D. The solution is u(x) =
Ex[f(ST )].

Definition. Let Ωx,n denote the set of all paths of length n in D which start
at a point x ∈ D and end up at a point in the boundary δD. It is a subset
of Γx,n, the set of all paths of length n in Zd starting at x. Lets call it the
discrete Wiener space of order n defined by x and D. It is a subset of the
set Γx,n which has 2dn elements. We take the uniform distribution on this
finite set so that Px,n[{γ}] = 1/2dn.

Definition. Let L be the matrix for which Lx,y = 1/(2d) if x, y ∈ Zd are
connected by a path and x is in the interior ofD. The matrix L is a bounded
linear operator on l2(D) and satisfies Lx,z = Lz,x for x, z ∈ int(D) = D\δD.
Given f : δD → R, we extend f to a function F (x) = 0 on

∫

D = D \ δD
and F (x) = f(x) for x ∈ δD. The discrete Dirichlet problem can be restated
as the problem to find the solution u to the system of linear equations

(1 − L)u = f .

Lemma 3.13.1. The number of paths in Ωx,n starting at x ∈ D and ending
at a different point y ∈ D is equal to (2d)nLnxy.
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Proof. Use induction. By definition, Lxz is 1/(2d) if there is a path from x
to z. The integer Lnx,y is the number of paths of length n from x to y. �

Figure. Here is an example of a
problem where D ⊂ Z2 has 10
points:

4L =

































0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 0
0 1 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

































.

Only the rows corresponding to
interior points are nonzero.

Definition. For a function f on the boundary δD, define

Ex,n[f ] =
∑

y∈δD
f(y)Lnx,y

and

Ex[f ] =

∞
∑

n=0

Ex,n[f ] .

This functional defines for every point x ∈ D a probability measure µx on
the boundary δD. It is the discrete analog of the harmonic measure in the
continuum. The measure Px on the set of paths satisfies Ex[1] = 1 as we
will just see.

Proposition 3.13.2. Let Sn be the random walk on Zd and let T be the
stopping time which is the first exit time of S from D. The solution to the
discrete Dirichlet problem is

u(x) = Ex[f(ST )] .

Proof. Because (1− L)u = f and

Ex,n[f ] = (Lnf)x ,
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we have from the geometric series formula

(1−A)−1 =

n
∑

k=0

Ak

the result

u(x) = (1 − L)−1f(x) =

∞
∑

n=0

[Lnf ]x =

∞
∑

n=0

Ex,n[f ] = Ex[ST ] .

Define the matrix K by Kjj = 1 for j ∈ δD and Kij = Lji/4 else. The
matrix K is a stochastic matrix: its column vectors are probability vectors.
The matrix K has a maximal eigenvalue 1 and so norm 1 (KT has the
maximal eigenvector (1, 1, . . . , 1) with eigenvalue 1 and since eigenvalues of
K agree with eigenvalues of KT ). Because ||L|| < 1, the spectral radius of
L is smaller than 1 and the series converges. If f = 1 on the boundary,
then u = 1 everywhere. From Ex[1] = 1 follows that the discrete Wiener
measure is a probability measure on the set of all paths starting at x. �

Figure. The random
walk defines a diffu-
sion process.

Figure. The diffusion
process after time t =
2.

Figure. The diffusion
process after time t =
3.

The path integral result can be generalized and the increased generality
makes it even simpler to describe:

Definition. Let (D,E) be an arbitrary finite directed graph, where D is
a finite set of n vertices and E ⊂ D × D is the set of edges. Denote an
edge connecting i with j with eij . Let K be a stochastic matrix on l2(D):
the entries satisfy Kij ≥ 0 and its column vectors are probability vectors
∑

i∈DKij = 1 for all j ∈ D. The stochastic matrix encodes the graph and
additionally defines a random walk on D if Kij is interpreted as the tran-
sition probability to hop from j to i. Lets call a point j ∈ δD a boundary
point, ifKjj = 1. The complement intD = D\δD consists of interior points.
Define the matrix L as Ljj = 0 if j is a boundary point and Lij = Kji

otherwise.
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The discrete Wiener space Ωx ⊂ D on D is the set of all finite paths γ =
(x = x0, x1, x2, . . . , xn) starting at a point x ∈ D for which Kxixi+1 > 0.
The discrete Wiener measure on this countable set is defined as Px[{γ}] =
∏n−1
j=0 Kj,j+1. A function u on D is called harmonic if (Lu)x = 0 for all

x ∈ D. The discrete Dirichlet problem on the graph is to find a function u
on D which is harmonic and which satisfies u = f on the boundary δD of
D.

Theorem 3.13.3 (The Dirichlet problem on graphs). Assume D is a directed
graph. If Sn is the random walk starting at x and T is the stopping time
to reach the boundary of D, then the solution

u = Ex[f(ST )]

is the expected value of ST on the discrete Wiener space of all paths starting
at x and ending at the boundary of D.

Proof. Let F be the function on D which agrees with f on the boundary of
D and which is 0 in the interior of D. The Dirichlet problem on the graph
is the system of linear equations (1 − L)u = f . Because the matrix L has
spectral radius smaller than 1, the problem is given by the geometric series

u =

∞
∑

n=0

Lnf .

But this is the sum Ex[f(ST )] over all paths γ starting at x and ending at
the boundary of f . �

Example. Lets look at a directed graph (D,E) with 5 vertices and 2 bound-
ary points. The Laplacian on D is defined by the stochastic matrix

K =













0 1/3 0 0 0
1/2 0 1 0 0
1/4 1/2 0 0 0
1/8 1/6 0 1 0
1/8 0 0 0 1













or the Laplacian

L =













0 1/2 1/4 1/8 1/8
1/3 0 1/2 1/6 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1













.

Given a function f on the boundary of D, the solution u of the discrete
Dirichlet problem (1 − L)u = f on this graph can be written as a path
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integral
∑∞
n=0 L

nf = Ex[f(ST )] for the random walk Sn on D stopped at
the boundary δD.

Figure. The directed graph
(D,E) with 5 vertices and 2
boundary points.

Remark. The interplay of random walks on graphs and discrete partial
differential equations is relevant in electric networks. For mathematical
treatments, see [18, 102].

3.14 Markov processes

Definition. Given a measurable space (S,B) called state space, where S is
a set and B is a σ-algebra on S. A function P : S × B → R is called a
transition probability function if P (x, ·) is a probability measure on (S,B)
for all x ∈ S and if for every B ∈ B, the map s→ P (s,B) is B-measurable.
Define P 1(x,B) = P (x,B) and inductively the measures Pn+1(x,B) =
∫

S P
n(y,B)P (x, dy), where we write

∫

P (x, dy) for the integration on S
with respect to the measure P (x, ·).

Example. If S is a finite set and B is the set of all subsets of S. Given
a stochastic matrix K and a point s ∈ S, the measures P (s, ·) are the
probability vectors, which are the columns of K.
A set of nodes with connections is a graph. Any network can be described by
a graph. The link structure of the web forms a graph, where the individual
websites are the nodes and if there is an arrow from site ai to site aj if ai
links to aj . The adjacency matrix A of this graph is called the web graph.
If there are n sites, then the adjacency matrix is a n×n matrix with entries
Aij = 1 if there exists a link from aj to ai. If we divide each column by the
number of 1 in that column, we obtain a Markov matrix A which is called
the normalized web matrix. Define the matrix E which satisfies Eij = 1/n
for all i, j. The graduate students and later entrepreneurs Sergey Brin and
Lawrence Page had in 1996 the following ”one billion dollar idea”:

Definition. A Google matrix is the matrix G = dA + (1 − d)E, where
0 < d < 1 is a parameter called damping factor and A is the stochastic
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matrix obtained from the adjacency matrix of a graph by scaling the rows
to become stochastic matrices. This is a stochastic n × n with eigenvalue
1. The corresponding eigenvector v scaled so that the largest value is 10 is
called page rank of the damping factor d.
Page rank is probably the world’s largest matrix computation. In 2006, one
had n=8.1 billion. [56]

Remark. The transition probability functions are elements in L(S,M1(S)),
where M1(S) is the set of Borel probability measures on S. With the mul-
tiplication

(P ◦Q)(x,B) =

∫

S

P (y,B) dQ(x)

we get a commutative semi-group. The relation Pn+m = Pn ◦ Pm is also
called the Chapmann-Kolmogorov equation.

Definition. Given a probability space (Ω,A,P) with a filtration An of σ-
algebras. An An-adapted process Xn with values in S is called a discrete
time Markov process if there exists a transition probability function P such
that

P[Xn ∈ B | Ak](ω) = Pn−k(Xk(ω), B) .

Definition. If the state space S is a discrete space, a finite or countable
set, then the Markov process is called a Markov chain, A Markov chain is
called a denumerable Markov chain, if the state space S is countable, a
finite Markov chain, if the state space is finite.

Remark. It follows from the definition of a Markov process that Xn satisfies
the elementary Markov property: for n > k,

P[Xn ∈ B | X1, . . . , Xk] = P[Xn ∈ B | Xk] .

This means that the probability distribution of Xn is determined by know-
ing the probability distribution of Xn−1. The future depends only on the
present and not on the past.

Theorem 3.14.1 (Markov processes exist). For any state space (S,B) and
any transition probability function P , there exists a corresponding Markov
process X .

Proof. Choose a probability measure µ on (S,B) and define on the prod-
uct space (Ω,A) = (SN,BN) the π-system C consisting of of cylinder-sets
∏

n∈NBn given by a sequence Bn ∈ B such that Bn = S except for finitely
many n. Define a measure P = Pµ on (Ω, C) by requiring

P[ωk ∈ Bk, k = 1, . . . n] =

∫

B0

µ(dx0)

∫

B1

P (x0, dx1) . . .

∫

Bn

P (xn−1, dxn) .
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This measure has a unique extension to the σ-algebra A.
Define the increasing sequence of σ-algebras An = Bn ×∏n

i=1{∅,Ω} con-
taining cylinder sets. The random variables Xn(ω) = xn are An-adapted.
In order to see that it is a Markov process, we have to check that

P[Xn ∈ Bn | An−1](ω) = P (Xn−1(ω), Bn)

which is a special case of the above requirement by taking Bk = S for
k 6= n. �

Example. Independent S-valued random variables
Assume the measures P (x, ·) are independent of x. Call this measure P. In
this case

P[Xn ∈ Bn | An−1](ω) = P[Bn]

which means that P[Xn ∈ Bn | An−1] = P[Xn ∈ Bn]. The S− valued
random variables Xn are independent and have identical distribution and
P is the law of Xn. Every sequence of IID random variables is a Markov
process.

Example. Countable and finite state Markov chains.
Given a Markov process with finite or countable state space S. We define
the transition matrix Pij on the Hilbert space l2(S) by

Pij = P (i, {j}) .

The matrix P transports the law of Xn into the law of Xn+1.
The transition matrix Pij is a stochastic matrix: each column is a proba-
bility vector:

∑

j Pij = 1 with Pij ≥ 0. Every measure on S can be given

by a vector π ∈ l2(S) and Pπ is again a measure. If X0 is constant and
equal to i and Xn is a Markov process with transition probability P , then
Pnij = P[Xn = j].

Example. Sum of independent S-valued random variables Let S be a count-
able Abelian group and let π be a probability distribution on S assigning
to each j ∈ S the weight πj . Define Pij = πj−i. Now Xn is the sum of n
independent random variables with law π. The sum changes from i to j
with probability Pij = pi−j .

Example. Branching processes Given S = {0, 1, 2 . . . } = N with fixed
probability distribution π. If X is a S-valued random variable with distri-
bution π then

∑n
k=1Xk has a distribution which we denote by π(n). Define

the matrix Pij = π
(i)
j . The Markov chain with this transition probability

matrix on S is called a branching process.

Definition. The transition probability function P acts also on measures π
of S by

P(π)(B) =

∫

S

P (x,B) dπ(x) .

A probability measure π is called invariant if Pπ = π. An invariant measure
π on S is called stationary measure of the Markov process.
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This operator on measures leaves a subclass of measures with densities with
respect to some measure ν invariant. We can so assign a Markov operator
to a transition probability function:

Lemma 3.14.2. For any x ∈ S define the measure

ν(B) =

∞
∑

n=0

1

2n
Pn(x,B)

on (S,B) has the property that if µ is absolutely continuous with respect
to ν, then also Pµ is absolutely continuous with respect to ν.

Proof. Given µ = f · ν with f ∈ L1(S). Lets assume that f ≥ 0 because in
general we can write f = f+ − f−, where f± are both nonnegative. If we
show that µ± = f±ν are both absolutely continuous also µ = µ+ − µ− is
absolutely continuous.
Now,

Pµ =

∫

S

P (x,B)f(x) dν(x)

is absolutely continuous with respect to ν because Pµ(B) = 0 implies
P (x,B) = 0 for almost all x with f(x) > 0 and therefore f(x)Pn(x,B) = 0
for all n and so f(x)ν(B) = 0 implying ν(B) = 0. �

Corollary 3.14.3. To each transition probability function can be assigned a
Markov operator P : L1(S, ν) → L1(S, ν).

Proof. Choose ν as above and define

Pf1 = f2

if Pµ1 = µ2 with µi = fiν. To check that P is a Markov operator, we have
to check Pf ≥ 0 if f ≥ 0, which follows from

Pfν(B) =

∫

S

P (x,B)f(x) dν(x) ≥ 0 .

We also have to show that ||Pf ||1 = 1 if ||f ||1 = 1. It is enough to show
this for elementary functions f =

∑

j aj1Bj with aj > 0 with Bj ∈ B
satisfying

∑

j ajν(Bj) = 1 satisfies ||P (1Bν)|| = ν(B). But this is obvious

||P (1Bν)|| =
∫

B
P (x, ·) dν(x) = ν(B). �
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We see that the abstract approach to study Markov operators on L1(S) is
more general, than looking at transition probability measures. This point
of view can reduce some of the complexity, when dealing with discrete time
Markov processes.
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Chapter 4

Continuous Stochastic
Processes

4.1 Brownian motion

Definition. Let (Ω,A,P) be a probability space and let T ⊂ R be time.
A collection of random variables Xt, t ∈ T with values in R is called a
stochastic process. If Xt takes values in S = Rd, it is called a vector-valued
stochastic process but one often abbreviates this by the name stochastic
process too. If the time T can be a discrete subset of R, then Xt is called
a discrete time stochastic process. If time is an interval, R+ or R, it is
called a stochastic process with continuous time. For any fixed ω ∈ Ω, one
can regard Xt(ω) as a function of t. It is called a sample function of the
stochastic process. In the case of a vector-valued process, it is a sample
path, a curve in Rd.

Definition. A stochastic process is called measurable, if X : T × Ω → S is
measurable with respect to the product σ-algebra B(T )×A. In the case of
a real-valued process (S = R), one says X is continuous in probability if
for any t ∈ R the limit Xt+h → Xt takes place in probability for h → 0.
If the sample function Xt(ω) is a continuous function of t for almost all ω,
then Xt is called a continuous stochastic process. If the sample function is
a right continuous function in t for almost all ω ∈ Ω, Xt is called a right
continuous stochastic process. Two stochastic process Xt and Yt satisfying
P[Xt − Yt = 0] = 1 for all t ∈ T are called modifications of each other
or indistinguishable. This means that for almost all ω ∈ Ω, the sample
functions coincide Xt(ω) = Yt(ω).

Definition. A Rn-valued random vector X is called Gaussian, if it has the
multidimensional characteristic function

φX(s) = E[eis·X ] = e−(s,V s)/2+i(m,s)

199
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for some nonsingular symmetric n×n matrix V and vector m = E[X ]. The
matrix V is called covariance matrix and the vector m is called the mean
vector.

Example. A normal distributed random variable X is a Gaussian random
variable. The covariance matrix is in this case the scalar Var[X ].

Example. If V is a symmetric matrix with determinant det(V ) 6= 0, then
the random variable

X(x) =
1

(2π)n/2
√

det(V )
e−(x−m,V−1(x−m))/2

on Ω = Rn is a Gaussian random variable with covariance matrix V . To
see that it has the required multidimensional characteristic function φX(u).
Note that because V is symmetric, one can diagonalize it. Therefore, the
computation can be done in a bases, where V is diagonal. This reduces the
situation to characteristic functions for normal random variables.

Example. A set of random variables X1, . . . , Xn are called jointly Gaussian
if any linear combination

∑n
i=1 aiXi is a Gaussian random variable too.

For a jointly Gaussian set of of random variables Xj, the vector X =
(X1, . . . , Xn) is a Gaussian random vector.

Example. A Gaussian process is a Rd-valued stochastic process with con-
tinuous time such that (Xt0 , Xt1 , . . . , Xtn) is jointly Gaussian for any t0 ≤
t1 < · · · < tn. It is called centered if mt = E[Xt] = 0 for all t.

Definition. An Rd-valued continuous Gaussian processXt withmean vector
mt = E[Xt] and the covariance matrix V (s, t) = Cov[Xs, Xt] = E[(Xs −
ms)·(Xt−mt)

∗] is called Brownian motion if for any 0 ≤ t0 < t1 < · · · < tn,
the random vectors Xt0 , Xti+1 − Xti are independent and the covariance
matrix V satisfies V (s, t) = V (r, r), where r = min(s, t) and s 7→ V (s, s).
It is called the standard Brownian motion if mt = 0 for all t and V (s, t) =
min{s, t}.

Figure. A path Xt(ω1) of Brow-
nian motion in the plane S = R2

with a drift mt = E[Xt] = (t, 0).
This is not standard Brownian
motion. The process Yt = Xt −
(t, 0) is standard Brownian mo-
tion.
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Recall that for two random vectorsX,Y with mean vectorsm,n, the covari-
ance matrix is Cov[X,Y ]ij = E[(Xi−mi)(Yj −nj)]. We say Cov[X,Y ] = 0
if this matrix is the zero matrix.

Lemma 4.1.1. A Gaussian random vector (X,Y ) with random vectors X,Y
satisfying Cov[X,Y ] = 0 has the property that X and Y are independent.

Proof. We can assume without loss of generality that the random variables
X,Y are centered. Two Rn-valued Gaussian random vectors X and Y are
independent if and only if

φ(X,Y )(s, t) = φX(s) · φY (t), ∀s, t ∈ Rn

Indeed, if V is the covariance matrix of the random vector X and W is the
covariance matrix of the random vector Y , then

U =

[

U Cov[X,Y ]
Cov[Y,X ] V

]

=

[

U 0
0 V

]

is the covariance matrix of the random vector (X,Y ). With r = (t, s), we
have therefore

φ(X,Y )(r) = E[eir·(X,Y )] = e−
1
2 (r·Ur)

= e−
1
2 (s·V s)− 1

2 (t·Wt)

= e−
1
2 (s·V s)e−

1
2 (t·Wt)

= φX(s)φY (t) .

�

Example. In the context of this lemma, one should mention that there
exist uncorrelated normal distributed random variables X,Y which are not
independent [114]: Proof. Let X be Gaussian on R and define for α > 0 the
variable Y (ω) = −X(ω), if ω > α and Y = X else. Also Y is Gaussian and
there exists α such that E[XY ] = 0. But X and Y are not independent and
X+Y = 0 on [−α, α] shows thatX+Y is not Gaussian. This example shows
why Gaussian vectors (X,Y ) are defined directly as R2 valued random
variables with some properties and not as a vector (X,Y ) where each of
the two component is a one-dimensional random Gaussian variable.

Proposition 4.1.2. If Xt is a Gaussian process with covariance V (s, t) =
V (r, r) with r = min(s, t), then it is Brownian motion.
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Proof. By the above lemma (4.1.1), we only have to check that for all i < j

Cov[Xt0 , Xtj+1 −Xtj ] = 0, Cov[Xti+1 −Xti , Xtj+1 −Xtj ] = 0 .

But by assumption

Cov[Xt0 , Xtj+1 −Xtj ] = V (t0, tj+1)− V (t0, tj) = V (t0, t0)− V (t0, t0) = 0

and

Cov[Xti+1 −Xti , Xtj+1 −Xtj ] = V (ti+1, tj+1)− V (ti+1, tj)

−V (ti, tj+1) + V (ti, tj)

= V (ti+1, ti+1)− V (ti+1, ti+1)

−V (ti, ti) + V (ti, ti) = 0 .

�

Remark. Botanist Robert Brown was studying the fertilization process in a
species of flowers in 1828. While watching pollen particles in water through
a microscope, he observed small particles in ”rapid oscillatory motion”.
While previous studies concluded that these particles were alive, Brown’s
explanation was that matter is composed of small ”active molecules”, which
exhibit a rapid, irregular motion having its origin in the particles themselves
and not in the surrounding fluid. Brown’s contribution was to establish
Brownian motion as an important phenomenon, to demonstrate its presence
in inorganic as well as organic matter and to refute by experiment incorrect
mechanical or biological explanations of the phenomenon. The book [74]
includes more on the history of Brownian motion.

The construction of Brownian motion happens in two steps: one first con-
structs a Gaussian process which has the desired properties and then shows
that it has a modification which is continuous.

Proposition 4.1.3. Given a separable real Hilbert space (H, || · ||). There
exists a probability space (Ω,A,P) and a family X(h), h ∈ H of real-valued
random variables on Ω such that h 7→ X(h) is linear, and X(h) is Gaussian,
centered and E[X(h)2] = ||h||2.

Proof. Pick an orthonormal basis {en} in H and attach to each en a cen-
tered Gaussian IID random variable Xn ∈ L2 satisfying ||Xn||2 = 1. Given
a general h =

∑

hnen ∈ H , define

X(h) =
∑

n

hnXn

which converges in L2. Because Xn are independent, they are orthonormal
in L2 so that

||X(h)||22 =
∑

n

h2n||Xn||2 =
∑

n

h2n = ||h||22 .
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�

Definition. If we choose H = L2(R+, dx), the map X : H 7→ L2 is
also called a Gaussian measure. For a Borel set A ⊂ R+ we define then
X(A) = X(1A). The term ”measure” is warranted by the fact that X(A) =
∑

nX(An) if A is a countable disjoint union of Borel sets An. One also has
X(∅) = 0.

Remark. The space X(H) ⊂ L2 is a Hilbert space isomorphic to H and in
particular

E[X(h)X(h′)] = (h, h′) .

We know from the above lemma that h and h′ are orthogonal if and only
if X(h) and X(h′) are independent and that

E[X(A)X(B)] = Cov[X(A), X(B)] = (1A, 1B) = |A ∩B| .

Especially X(A) and X(B) are independent if and only if A and B are
disjoint.

Definition. Define the process Bt = X([0, t]). For any sequence t1, t2, · · · ∈
T , this process has independent increments Bti −Bti−1 and is a Gaussian
process. For each t, we have E[B2

t ] = t and for s < t, the increment Bt−Bs
has variance t− s so that

E[BsBt] = E[B2
s ] + E[Bs(Bt −Bs)] = E[B2

s ] = s .

This model of Brownian motion has everything except continuity.

Theorem 4.1.4 (Kolmogorov’s lemma). Given a stochastic process Xt with
t ∈ [a, b] for which there exist three constants p > r,K such that

E[|Xt+h −Xt|p] ≤ K · h1+r

for every t, t + h ∈ [a, b], then Xt has a modification Yt which is almost
everywhere continuous: for all s, t ∈ [a, b]

|Yt(ω)− Ys(ω)| ≤ C(ω) |t− s|α, 0 < α <
r

p
.

Proof. We can assume without loss of generality that a = 0, b = 1 because
we can translate and rescale the time variable to be in this situation. Define
ǫ = r − αp. By the Chebychev-Markov inequality (2.5.4)

P[|Xt+h −Xt|] ≥ |h|α] ≤ |h|−αpE[|Xt+h −Xt|p] ≤ K|h|1+ǫ

so that
P[|X(k+1)/2n −Xk/2n | ≥ 2−nα] ≤ K2−n(1+ǫ) .
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Therefore

∞
∑

n=1

2n−1
∑

k=0

P[|X(k+1)/2n −Xk/2n | ≥ 2−nα] <∞ .

By the first Borel-Cantelli’s lemma (2.2.2), there exists n(ω) < ∞ almost
everywhere such that for all n ≥ n(ω) and k = 0, . . . , 2n − 1

|X(k+1)/2n(ω)−Xk/2n(ω)| < 2−nα .

Let n ≥ n(ω) and t ∈ [k/2n, (k+1)/2n] of the form t = k/2n+
∑m
i=1 γi/2

n+i

with γi ∈ {0, 1}. Then

|Xt(ω)−Xk2−n(ω)| ≤
m
∑

i=1

γi2
−α(n+i) ≤ d 2−nα

with d = (1− 2−α)−1. Similarly

|Xt −X(k+1)2−n | ≤ d 2−nα .

Given t, t + h ∈ D = {k2−n | n ∈ N, k = 0, . . . n − 1}. Take n so that
2−n−1 ≤ h < 2−n and k so that k/2n+1 ≤ t < (k + 1)/2n+1. Then (k +
1)/2n+1 ≤ t+ h ≤ (k + 3)/2n+1 and

|Xt+h −Xt| ≤ 2d2−(n+1)α ≤ 2dhα .

For almost all ω, this holds for sufficiently small h.

We know now that for almost all ω, the path Xt(ω) is uniformly continuous
on the dense set of dyadic numbers D = {k/2n}. Such a function can be
extended to a continuous function on [0, 1] by defining

Yt(ω) = lim
s∈D→t

Xs(ω) .

Because the inequality in the assumption of the theorem implies E[Xt(ω)−
lims∈D→tXs(ω)] = 0 and by Fatou’s lemma E[Yt(ω)−lims∈D→tXs(ω)] = 0
we know that Xt = Yt almost everywhere. The process Y is therefore a
modification of X . Moreover, Y satisfies

|Yt(ω)− Ys(ω)| ≤ C(ω) |t− s|α

for all s, t ∈ [a, b]. �

Corollary 4.1.5. Brownian motion exists.
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Proof. In one dimension, take the process Bt from above. Since Xh =
Bt+h − Bt is centered with variance h, the fourth moment is E[X4

h] =
d4

dx4 exp(−x2h/2)|x=0 = 3h2, so that

E[(Bt+h −Bt)
4] = 3h2 .

Kolmogorov’s lemma (4.1.4) assures the existence of a continuous modifi-
cation of B.

To define standard Brownian motion in n dimension, we take the joint

motion Bt = (B
(1)
t , . . . , B

(n)
t ) of n independent one- dimensional Brownian

motions. �

Definition. Let Bt be the standard Brownian motion. For any x ∈ Rn, the
process Xx

t = x+Bt is called Brownian motion started at x.

The first rigorous construction of Brownian motion was given by Norbert
Wiener in 1923. By construction of a Wiener measure on C[0, 1], one has
a construction of Brownian motion, where the probability space is directly
given by the set of paths. One has then the process Xt(ω) = ω(t). We will
come to this later. A general construction of such measures is possible given
a Markov transition probability function [108]. The construction given here
is due to Neveu and goes back to Kakutani. It can be found in Simon’s book
on functional integration [96] or in the book of Revuz and Yor [85] about
continuous martingales and Brownian motion. This construction has the
advantage that it can be applied to more general situations.

In McKean’s book ”Stochastic integrals” [67] one can find Lévy’s direct
proof of the existence of Brownian motion. Because that proof gives an ex-
plicit formula for the Brownian motion process Bt and is so constructive,
we outline it shortly:

1) Take as a basis in L2([0, 1] the Haar functions

fk,n := 2(n−1)/2(1[(k−1)2−n,k2−n] − 1[k2−n,(k+1)2−n])

for {(k, n)|n ≥ 1, k < 2n } and f0,0 = 1.

2) Take a family Xk,n for (k, n) ∈ I = {(k, n) | n ≥ 1, k < 2n, k odd } ∪
{(0, 0) } of independent Gaussian random variables.

3) Define

Bt =
∑

(k,n)∈I
Xk,n

∫ t

0

fk,n .

4) Prove convergence of the above series.

5) Check

E[BsBt] =
∑

(k,n)∈I

∫ s

0

∫ t

0

f(k,n)fι =

∫ 1

0

1[0,s]1[0,t] = inf{s, t } .
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6) Extend the definition from t ∈ [0, 1] to t ∈ [0,∞) by taking independent

Brownian motions B
(i)
t and defining Bt =

∑

n<[t]B
(n)
t−n, where [t] is the

largest integer smaller or equal to t.

4.2 Some properties of Brownian motion

We first want to establish that Brownian motion is unique. To do so, we
first have to say, when two processes are the same:

Definition. Two processes Xt on (Ω,A,P) and X ′
t on (Ω′,A′,P′) are called

indistinguishable, if there exists an isomorphism U : Ω → Ω′ of probability
spaces, such that X ′

t(Uω) = Xt(ω). Indistinguishable processes are consid-
ered the same. A special case is if the two processes are defined on the same
probability space (Ω,A,P) and Xt(ω) = Yt(ω) for almost all ω.

Proposition 4.2.1. Brownian motion is unique in the sense that two stan-
dard Brownian motions are indistinguishable.

Proof. The construction of the map H → L2 was unique in the sense that
if we construct two different processes X(h) and Y (h), then there exists an
isomorphism U of the probability space such that X(h) = Y (U(h)). The
continuity of Xt and Yt implies then that for almost all ω, Xt(ω) = Yt(Uω).
In other words, they are indistinguishable. �

We are now ready to list some symmetries of Brownian motion.

Theorem 4.2.2 (Properties of Brownian motion). The following symmetries
exist:
(i) Time-homogeneity: For any s > 0, the process B̃t = Bt+s − Bs is a
Brownian motion independent of σ(Bu, u ≤ s).
(ii) Reflection symmetry: The process B̃t = −Bt is a Brownian motion.
(iii) Brownian scaling: For every c > 0, the process B̃t = cBt/c2 is a Brow-
nian motion.
(iv) Time inversion: The process B̃0 = 0, B̃t = tB1/t, t > 0 is a Brownian
motion.

Proof. (i),(ii),(iii) In each case, B̃t is a continuous centered Gaussian pro-
cess with continuous paths, independent increments and variance t.
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(iv) B̃ is a centered Gaussian process with covariance

Cov[B̃s, B̃t] = E[B̃s, B̃t] = st · E[B1/s, B1/t] = st · inf(1
s
,
1

t
) = inf(s, t) .

Continuity of B̃t is obvious for t > 0. We have to check continuity only for
t = 0, but since E[B̃2

s ] = s → 0 for s → 0, we know that B̃s → 0 almost
everywhere. �

It follows the strong law of large numbers for Brownian motion:

Theorem 4.2.3 (SLLN for Brownian motion). If Bt is Brownian motion,
then

lim
t→∞

1

t
Bt = 0

almost surely.

Proof. From the time inversion property (iv), we see that t−1Bt = B1/t

which converges for t → ∞ to 0 almost everywhere, because of the almost
everywhere continuity of Bt. �

Definition. A parameterized curve t ∈ [0,∞) 7→ Xt ∈ Rn is called Hölder
continuous of order α if there exists a constant C such that

||Xt+h −Xt|| ≤ C · hα

for all h > 0 and all t. A curve which is Hölder continuous of order α = 1
is called Lipshitz continuous.

The curve is called locally Hölder continuous of order α if there exists for
each t a constant C = C(t) such that

||Xt+h −Xt|| ≤ C · hα

for all small enough h. For a Rd-valued stochastic process, (local) Hölder
continuity holds if for almost all ω ∈ Ω the sample path Xt(ω) is (local)
Hölder continuous for almost all ω ∈ Ω.

Proposition 4.2.4. For every α < 1/2, Brownian motion has a modification
which is locally Hölder continuous of order α.
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Proof. It is enough to show it in one dimension because a vector func-
tion with locally Hölder continuous component functions is locally Hölder
continuous. Since increments of Brownian motion are Gaussian, we have

E[(Bt −Bs)
2p] = Cp · |t− s|p

for some constant Cp. Kolmogorov’s lemma assures the existence of a mod-
ification satisfying locally

|Bt −Bs| ≤ C |t− s|α, 0 < α <
p− 1

2p
.

Because p can be chosen arbitrary large, the result follows. �

Because of this proposition, we can assume from now on that all the paths
of Brownian motion are locally Hölder continuous of order α < 1/2.

Definition. A continuous path Xt = (X
(1)
t , . . . , X

(n)
t ) is called nowhere

differentiable, if for all t, each coordinate function X
(i)
t is not differentiable

at t.

Theorem 4.2.5 (Wiener). Brownian motion is nowhere differentiable: for
almost all ω, the path t 7→ Xt(ω) is nowhere differentiable.

Proof. We follow [67]. It is enough to show it in one dimensions. Suppose
Bt is differentiable at some point 0 ≤ s ≤ 1. There exists then an integer l
such that |Bt − Bs| ≤ l(t− s) for t− s > 0 small enough. But this means
that

|Bj/n −B(j−1)/n| ≤ 7
l

n

for all j satisfying

i = [ns] + 1 ≤ j ≤ [ns] + 4 = i+ 3

and sufficiently large n so that the set of differentiable paths is included in
the set

B =
⋃

l≥1

⋃

m≥1

⋂

n≥m

⋃

0<i≤n+1

⋂

i<j≤i+3

{|Bj/n −B(j−1)/n| < 7
l

n
} .
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Using Brownian scaling, we show that P[B] = 0 as follows

P[
⋂

n≥m

⋃

0<i≤n+1

⋂

i<j≤i+3

{|Bj/n −B(j−1)/n| < 7
l

n
}]

≤ lim inf
n→∞

nP[|B1/n| < 7
l

n
]3

= lim inf
n→∞

nP[|B1| < 7
l√
n
]3

≤ lim
n→∞

C√
n
= 0 .

�

Remark. This proposition shows especially that we have no Lipshitz con-
tinuity of Brownian paths. A slight generalization shows that Brownian
motion is not Hölder continuous for any α ≥ 1/2. One has just to do the
same trick with k instead of 3 steps, where k(α − 1/2) > 1. The actual
modulus of continuity is very near to α = 1/2: |Bt −Bt+ǫ| is of the order

h(ǫ) =

√

2ǫ log(
1

ǫ
) .

More precisely, P[lim supǫ→0 sup|s−t|≤ǫ
|Bs−Bt|
h(ǫ) = 1] = 1, as we will see

later in theorem (4.4.2).
The covariance of standard Brownian motion was given by E[BsBt] =
min{s, t}. We constructed it by implementing the Hilbert space L2([0,∞))
as a Gaussian subspace of L2(Ω,A,P). We look now at a more general class
of Gaussian processes.

Definition. A function V : T × T → R is called positive semidefinite,
if for all finite sets {t1, . . . , td} ⊂ T , the matrix Vij = V (ti, tj) satisfies
(u, V u) ≥ 0 for all vectors u = (u1, . . . , un).

Proposition 4.2.6. The covariance of a centered Gaussian process is positive
semidefinite. Any positive semidefinite function V on T×T is the covariance
of a centered Gaussian process Xt.

Proof. The first statement follows from the fact that for all u = (u1, . . . , un)

∑

i,j

V (ti, tj)uiuj = E[(
n
∑

i=1

uiXti)
2] ≥ 0 .

We introduce for t ∈ T a formal symbol δt. Consider the vector space of
finite sums

∑n
i=1 aiδti with inner product

(
d

∑

i=1

aiδti ,
d

∑

j=1

bjδtj ) =
∑

i,j

aibjV (ti, tj) .
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This is a positive semidefinite inner product. Multiplying out the null vec-
tors {||v|| = 0 } and doing a completion gives a separable Hilbert space
H . Define now as in the construction of Brownian motion the process
Xt = X(δt). Because the map X : H → L2 preserves the inner product, we
have

E[Xt, Xs] = (δs, δt) = V (s, t) .

�

Lets look at some examples of Gaussian processes:

Example. TheOrnstein-Uhlenbeck oscillator processXt is a one-dimensional
process which is used to describe the quantum mechanical oscillator as we
will see later. Let T = R+ and take the function V (s, t) = 1

2e
−|t−s| on

T ×T . We first show that V is positive semidefinite: The Fourier transform
of f(t) = e−|t| is

∫

R

eikte−|t|dt =
1

2π(k2 + 1)
.

By Fourier inversion, we get

1

2π

∫

R

(k2 + 1)−1eik(t−s) dk =
1

2
e−|t−s| ,

and so

0 ≤ (2π)−1

∫

R

(k2 + 1)−1
∑

j

|ujeiktj |2 dk

=
n
∑

j,k=1

ujuk
1

2
e−|tj−tk| .

This process has a continuous modification because

E[(Xt −Xs)
2] = (e−|t−t| + e−|s−s| − 2e−|t−s|)/2 = (1− e−|t−s|) ≤ |t− s|

and Kolmogorov’s criterion. The Ornstein-Uhlenbeck is also called the os-
cillatory process.

Proposition 4.2.7. Brownian motion Bt and the Ornstein-Uhlenbeck pro-
cess Ot are for t ≥ 0 related by

Ot =
1√
2
e−tBe2t .

Proof. Denote by O the Ornstein-Uhlenbeck process and let

Xt = 2−1/2e−tBe2t .
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We want to show that X = Y . Both X and O are centered Gaussian,
continuous processes with independent increments. To verify that they are
the same, we have to show that they have the same covariance. This is a
computation:

E[OtOs] =
1

2
e−te−smin{e2t, e2s } = e|s−t|/2 .

�

It follows from this relation that also the Ornstein-Uhlenbeck process is
not differentiable almost everywhere. There are also generalized Ornstein-
Uhlenbeck processes. The case V (s, t) =

∫

R
e−ik(t−s) dµ(k) = µ̂(t − s)

with the Cauchy measure µ = 1
2π(k2+1)dx on R can be generalized to take

any symmetric measure µ on R and let µ̂ denote its Fourier transform
∫

R
e−ikt dµ(k). The same calculation as above shows that the function

V (s, t) = µ̂(t− s) is positive semidefinite.

Figure. Three paths of the
Ornstein-Uhlenbeck process.

Example. Brownian bridge is a one-dimensional process with time T =
[0, 1] and V (s, t) = s(1 − t) for 1 ≤ s ≤ t ≤ 1 and V (s, t) = V (t, s) else. It
is also called tied down process.

In order to show that V is positive semidefinite, one observes that Xt =
Bs − sB1 is a Gaussian process, which has the covariance

E[XsXt] = E[(Bs − sB1)(Bt − tB1)] = s+ st− 2st = s(1− t) .

Since E[X2
1 ] = 0, we have X1 = 0 which means that all paths start from 0

at time 0 and end at 1 at time 1.
The realization Xt = Bs − sB1 shows also that Xt has a continuous real-
ization.
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Figure. Three paths of Brownian
bridge.

Let Xt be the Brownian bridge and let y be a point in Rd. We can consider
the Gaussian process Yt = ty +Xt which describes paths going from 0 at
time 0 to y at time 1. The process Y has however no more zero mean.
Brownian motion B and Brownian bridge X are related to each other by
the formulas:

Bt = B̃t := (t+ 1)Xt/(t+1), Xt = X̃t := (1 − t)Bt/(1−t) .

These identities follow from the fact that both are continuous centered
Gaussian processes with the right covariance:

E[B̃sB̃t] = (t+ 1)(s+ 1)min{ t

(t+ 1)
,

s

(s+ 1)
} = min{s, t} = E[BsBt] ,

E[X̃sX̃t] = (1− t)(1− s)min{ s

(1− s)
,

t

(1− t)
} = s(1− t) = E[XsXt]

and uniqueness of Brownian motion.

Example. If V (s, t) = 1{s=t }, we get a Gaussian process which has the
property that Xs and Xt are independent, if s 6= t. Especially, there is no
autocorrelation between different Xs and Xt. This process is called white
noise or ”great disorder”. It can not be modified so that (t, ω) 7→ Xt(ω) is

measurable: if (t, ω) 7→ Xt(ω) were measurable, then Yt =
∫ t

0 Xs ds would
be measurable too. But then

E[Y 2
t ] = E[(

∫ t

0

Xs)
2] =

∫ t

0

∫ t′

0

E[Xs′Xs′ ] ds
′ ds = 0

which implies Yt = 0 almost everywhere so that the measure dµ(ω) =
Xs(ω) ds is zero for almost all ω.

t = E[

∫ t

0

X2
s ] = E[

∫ t

0

XsXs ds] = E[

∫ t

0

Xs dµ(s)] = 0 .

In a distributional sense, one can see Brownian motion as a solution of
the stochastic differential equation and white noise as a generalized mean-
square derivative of Brownian motion. We will look at stochastic differential
equations later.
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Example. Brownian sheet is not a stochastic process with one dimensional
time but a random field: time T = R2

+ is two dimensional. Actually, as
long as we deal only with Gaussian random variables and do not want to
tackle regularity questions, the time T can be quite arbitrary and proposi-
tion (4.2.6) stated at the beginning of this section holds true. The Gaussian
process with

V ((s1, s2), (t1, t2)) = min(s1, t1) ·min(s2, t2)

is called Brownian sheet. It has similar scaling properties as Brownian mo-
tion.

Figure. Illustrating a sample of a
Brownian sheet Bt,s. Time is two
dimensional. Every trace Bt =
Bt,s0 or Bt = Bt,s0 is standard
Brownian motion.

4.3 The Wiener measure

Let (E, E) be a measurable space and let T be a set called ”time”. A
stochastic process on a probability space (Ω,A,P) indexed by T and with
values in E defines a map

φ : Ω → ET , ω 7→ Xt(ω) .

The product space ET is equipped with the product σ-algebra ET , which
is the smallest algebra for which all the functions Xt are measurable which
is the σ-algebra generated by the π-system

{
n
∏

t1,...,tn

Ati = {x ∈ ET , xti ∈ Ati} | Ati ∈ E}

consisting of cylinder sets. Denote by Yt(w) = w(t) the coordinate maps on
ET . Because Yt ◦ φ is measurable for all t, also φ is measurable. Denote by
PX the push-forward measure of φ from (Ω,A,P) to (ET , ET ) defined by
PX [A] = P[X−1(A)]. For any finite set (t1, . . . , tn) ⊂ T and all sets Ai ∈ E ,
we have

P[Xti ∈ Ai, i = 1, . . . , n] = PX [Yti ∈ Ai, 1 = 1, . . . n] .

One says, the two processes X and Y are versions of each other.
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Definition. Y is called the coordinate process of X and the probability
measure PX is called the law of X .

Definition. Two processes X,X ′ possibly defined on different probability
spaces are called versions of each other if they have the same law PX = PX′ .

One usually does not work with the coordinate process but prefers to work
with processes which have some continuity properties. Many processes have
versions which are right continuous and have left hand limits at every point.

Definition. Let D be a measurable subset of ET and assume the process
X has a version X such that almost all paths X(ω) are in D. Define the
probability space (D, ET ∩D,Q), where Q is the measure Q = φ∗P where
φ : Ω → D has the property that φ(ω) is the version of ω in D. Obviously,
the process Y defined on (D, ET ∩ D,Q) is another version of X . If D is
right continuous with left hand limits, the process is called the canonical
version of X .

Corollary 4.3.1. Let E = Rd and T = R+. There exists a unique probability
measureW on C(T,E) for which the coordinate process Y is the Brownian
motion B.

Proof. Let D = C(T,E) ⊂ ET . Define the measure W = φ∗PX and let
Y be the coordinate process of B. Uniqueness: assume we have two such
measures W,W ′ and let Y, Y ′ be the coordinate processes of B on D with
respect to W and W ′. Since both Y and Y ′ are versions of X and ”being
a version” is an equivalence relation, they are also versions of each other.
This means that W and W ′ coincide on a π- system and are therefore the
same. �

Definition. If E = Rd and T = [0,∞), the measure W on C(T,E) is called
the Wiener measure. The probability space (C(T,E), ET ∩ C(T,E),W ) is
called the Wiener space.

Let B′ be the σ-algebra ET ∩ C(T,E), which is the Borel σ-algebra re-
stricted to C(T,E). The space C(T,E) carries an other σ-algebra, namely
the Borel σ-algebra B generated by its own topology. We have B ⊂ B′,
since all closed balls {f ∈ C(T,E) | |f − f0| ≤ r} ∈ B are in B′. The other
relation B′ ⊂ B is clear so that B = B′. The Wiener measure is therefore a
Borel measure.

Remark. The Wiener measure can also be constructed without Brownian
motion and can be used to define Brownian motion. We sketch the idea.
Let S = Ṙn denote the one point compactification of Rn. Define Ω = S[0,t]
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be the set of functions from [0, t] to S which is also the set of paths in R
n
.

It is by Tychonov a compact space with the product topology. Define

Cfin(Ω) = {φ ∈ C(Ω,R) | ∃F : Rn → R, φ(ω) = F (ω(t1), . . . , ω(tn))} .

Define also the Gauss kernel p(x, y, t) = (4πt)−n/2 exp(−|x−y|2/4t). Define
on Cfin(Ω) the functional

(Lφ)(s1, . . . , sm) =

∫

(Rn)m
F (x1, x2, . . . , xm)p(0, x1, s1)p(x1, x2, s2)

· · · p(xm−1, xm, sm) dx1 · · · dxm

with s1 = t1 and sk = tk − tk−1 for k ≥ 2. Since L(φ) ≤ |φ(ω)|∞, it
is a bounded linear functional on the dense linear subspace Cfin(Ω) ⊂
C(Ω). It is nonnegative and L(1) = 1. By the Hahn Banach theorem, it
extends uniquely to a bounded linear functional on C(Ω). By the Riesz
representation theorem, there exists a unique measure µ on C(Ω) such that
L(φ) =

∫

φ(ω) dµ(ω). This is the Wiener measure on Ω.

4.4 Lévy’s modulus of continuity

We start with an elementary estimate

Lemma 4.4.1.

1

a
e−a

2/2 >

∫ ∞

a

e−x
2/2 dx >

a

a2 + 1
e−a

2/2 .

Proof.
∫ ∞

a

e−x
2/2 dx <

∫ ∞

a

e−x
2/2(x/a) dx =

1

a
e−a

2/2 .

For the right inequality consider

∫ ∞

a

1

b2
e−b

2/2 db <
1

a2

∫ ∞

a

e−x
2/2 dx .

Integrating by parts of the left hand side of this gives

1

a
e−a

2/2 −
∫ ∞

a

e−x
2/2 dx <

1

a2

∫ ∞

a

e−x
2/2 dx .

�
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Theorem 4.4.2 (Lévy’s modulus of continuity). If B is standard Brownian
motion, then

P[lim sup
ǫ→0

sup
|s−t|≤ǫ

|Bs −Bt|
h(ǫ)

= 1] = 1 ,

where h(ǫ) =
√

2ǫ log(1/ǫ).

Proof. We follow [85]:

(i) Proof of the inequality ”≥ 1”.
Take 0 < δ < 1. Define an = (1− δ)h(2−n) = (1− δ)

√
n2 log 2. Consider

P[An] = P[ max
1≤k≤2n

|Bk2−n −B(k−1)2−n | ≤ an] .

Because Bk/2n −B(k−1)/2n are independent Gaussian random variables, we
compute, using the above lemma (4.4.1) and 1− s < e−s

P[An] ≤ (1− 2

∫ ∞

an

1√
2π
e−x

2/2 dx)2
n

≤ (1− 2
an

a2n + 1
e−a

2
n/2)2

n

≤ exp(−2n
2an
a2n + 1

e−a
2
n/2) ≤ e−C exp(n(1−(1−δ)2)/√n) ,

where C is a constant independent of n. Since
∑

n P[An] < ∞, we get by
the first Borel-Cantelli that P[lim supnAn] = 0 so that

P[ lim
n→∞

max
1≤k≤2n

|Bk2−n −B(k−1)2n | ≥ h(2−n)] = 1 .

(ii) Proof of the inequality ”≤ 1”.
Take again 0 < δ < 1 and pick ǫ > 0 such that (1 + ǫ)(1 − δ) > (1 + δ).
Define

P[An] = P[ max
k=j−i∈K

|Bj2−n −Bi2−n |/h(k2−n) ≥ (1 + ǫ)]

= P[
⋃

k=j−i∈K
{|Bj2−n −Bi2−n |] ≥ an,k} ,

where

K = {0 < k ≤ 2nδ }

and an,k = h(k2−n)(1 + ǫ).
Using the above lemma, we get with some constants C which may vary
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from line to line:

P[An] ≤
∑

k∈K
a−1
n,ke

−a2n,k/2

≤ C ·
∑

k∈K
log(k−12n)−1/2e−(1+ǫ)2 log(k−12n)

≤ C · 2−n(1−δ)(1+ǫ)2
∑

k∈K
(log(k−12n))−1/2 ( since k−1 > 2−nδ)

≤ C · n−1/22n(δ−(1−δ)(1+ǫ)2) .

In the last step was used that there are at most 2nδ points in K and for
each of them log(k−12n) > log(2n(1− δ)).
We see that

∑

n P[An] converges. By Borel-Cantelli we get for almost every
ω an integer n(ω) such that for n > n(ω)

|Bj2−n −Bi2−n | < (1 + ǫ) · h(k2−n) ,
where k = j − i ∈ K. Increase possibly n(ω) so that for n > n(ω)

∑

m>n

h(2−m) < ǫ · h(2−(n+1)(1−δ)) .

Pick 0 ≤ t1 < t2 ≤ 1 such that t = t2 − t1 < 2−n(ω)(1−δ). Take next
n > n(ω) such that 2−(n+1)(1−δ) ≤ t < 2−n(1−δ) and write the dyadic
development of t1, t2:

t1 = i2−n − 2−p1 − 2−p2 . . . , t2 = j2−n + 2−q1 + 2−q2 . . .

with t1 ≤ i2−n < j2−n ≤ t2 and 0 < k = j − i ≤ t2n < 2nδ. We get

|Bt1(ω)−Bt2(ω)| ≤ |Bt1 −Bi2−n(ω)|
+|Bi2−n(ω)−Bj2−n(ω)|
+|Bj2−n(ω)−Bt2 |

≤ 2
∑

p>n

(1 + ǫ)h(2−p) + (1 + ǫ)h(k2−n)

≤ (1 + 3ǫ+ 2ǫ2)h(t) .

Because ǫ > 0 was arbitrary, the proof is complete. �

4.5 Stopping times

Stopping times are useful for the construction of new processes, in proofs
of inequalities and convergence theorems as well as in the study of return
time results. A good source for stopping time results and stochastic process
in general is [85].

Definition. A filtration of a measurable space (Ω,A) is an increasing family
(At)t≥0 of sub-σ-algebras of A. A measurable space endowed with a filtra-
tion (At)t≥0 is called a filtered space. A process X is called adapted to the
filtration At, if Xt is At-measurable for all t.
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Definition. A process X on (Ω,A,P) defines a natural filtration At =
σ(Xs | s ≤ t), the minimal filtration of X for which X is adapted. Heuris-
tically, At is the set of events, which may occur up to time t.

Definition. With a filtration we can associate two other filtration by setting
for t > 0

At− = σ(As, s < t),At+ =
⋂

s>t

As .

For t = 0 we can still define A0+ =
⋂

s>0 As and define A0− = A0. Define
also A∞ = σ(As, s ≥ 0).

Remark. We always have At− ⊂ At ⊂ At+ and both inclusions can be
strict.

Definition. If At = At+ then the filtration At is called right continuous. If
At = At− , then At is left continuous. As an example, the filtration At+ of
any filtration is right continuous.

Definition. A stopping time relative to a filtration At is a map T : Ω →
[0,∞] such that {T ≤ t } ∈ At.

Remark. If At is right continuous, then T is a stopping time if and only
if {T < t } ∈ At. Also T is a stopping time if and only if Xt = 1(0,T ](t) is
adapted. X is then a left continuous adapted process.

Definition. If T is a stopping time, define

AT = {A ∈ A∞ | A ∩ {T ≤ t} ∈ At, ∀t} .

It is a σ-algebra. As an example, if T = s is constant, then AT = As. Note
also that

AT+ = {A ∈ A∞ | A ∩ {T < t} ∈ At, ∀t} .
We give examples of stopping times.

Proposition 4.5.1. Let X be the coordinate process on C(R+, E), where E
is a metric space. Let A be a closed set in E. Then the so called entry time

TA(ω) = inf{t ≥ 0 | Xt(ω) ∈ A }

is a stopping time relative to the filtration At = σ({Xs }s≤t).

Proof. Let d be the metric on E. We have

{TA ≤ t} = { inf
s∈Q,s≤t

d(Xs(ω), A) = 0 }

which is in At = σ(Xs, x ≤ t). �
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Proposition 4.5.2. Let X be the coordinate process on D(R+, E), the space
of right continuous functions, where E is a metric space. Let A be an open
subset of E. Then the hitting time

TA(ω) = inf{t > 0 | Xt(ω) ∈ A }

is a stopping time with respect to the filtration At+ .

Proof. TA is a At+ stopping time if and only if {TA < t} ∈ At for all t.
If A is open and Xs(ω) ∈ A, we know by the right-continuity of the paths
that Xt(ω) ∈ A for every t ∈ [s, s+ ǫ) for some ǫ > 0. Therefore

{TA < t} = { inf
s∈Q,s<t

Xs ∈ A } ∈ At .

�

Definition. Let At be a filtration on (Ω,A) and let T be a stopping time.
For a process X , we define a new random variable XT on the set {T <∞ }
by

XT (ω) = XT (ω)(ω) .

Remark. We have met this definition already in the case of discrete time
but in the present situation, it is not clear whether XT is measurable. It
turns out that this is true for many processes.

Definition. A processX is called progressively measurable with respect to a
filtration At if for all t, the map (s, ω) 7→ Xs(ω) from ([0, t]×Ω,B([0, t]×At)
into (E, E) is measurable.

A progressively measurable process is adapted. For some processes, the
inverse holds:

Lemma 4.5.3. An adapted process with right or left continuous paths is
progressively measurable.

Proof. Assume right continuity (the argument is similar in the case of left
continuity). Write X as the coordinate processD([0, t], E). Denote the map
(s, ω) 7→ Xs(ω) with Y = Y (s, ω). Given a closed ball U ∈ E . We have to
show that Y −1(U) = {(s, ω) | Y (s, ω) ∈ U} ∈ B([0, t]) ×At. Given k = N,
we define E0,U = 0 and inductively for k ≥ 1 the k’th hitting time (a
stopping time)

Hk,U (ω) = inf{s ∈ Q | Ek−1,U (ω) < s < t, Xs ∈ U }
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as well as the k’th exit time (not necessarily a stopping time)

Ek,U (ω) = inf{s ∈ Q|Hk,U (ω) < s < t, Xs /∈ U} .

These are countably many measurable maps from D([0, t], E) to [0, t]. Then
by the right-continuity

Y −1(U) =

∞
⋃

k=1

{(s, ω) | Hk,U (ω) ≤ s ≤ Ek,U (ω)}

which is in B([0, t])×At. �

Proposition 4.5.4. If X is progressively measurable and T is a stopping
time, then XT is AT -measurable on the set {T <∞}.

Proof. The set {T <∞ } is itself in AT . To say that XT is AT - measurable
on this set is equivalent with XT · 1{T≤t} ∈ At for every t. But the map

S : ({T ≤ t},At ∩ {T ≤ t}) → ([0, t],B[0, t])

is measurable because T is a stopping time. This means that the map
ω 7→ (T (ω), ω) from (Ω,At) to ([0, t]×Ω,B([0, t])×At) is measurable and
XT is the composition of this map with X which is B[0, t]×At measurable
by hypothesis. �

Definition. Given a stopping time T and a processX , we define the stopped
process (XT )t(ω) = XT∧t(ω).

Remark. If At is a filtration then At∧T is a filtration since if T1 and T2 are
stopping times, then T1 ∧ T2 is a stopping time.

Corollary 4.5.5. If X is progressively measurable with respect to At and
T is a stopping time, then (XT )t = Xt∧T is progressively measurable with
respect to At∧T .

Proof. Because t∧ T is a stopping time, we have from the previous propo-
sition that XT is At∧T measurable.
We know by assumption that φ : (s, ω) 7→ Xs(ω) is measurable. Since also
ψ : (s, ω) 7→ (s ∧ T )(ω) is measurable, we know also that the composition
(s, ω) 7→ XT (ω) = Xψ(s,ω)(ω) = φ(ψ(s, ω), ω) is measurable. �
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Proposition 4.5.6. Every stopping time is the decreasing limit of a sequence
of stopping times taking only finitely many values.

Proof. Given a stopping time T , define the discretisation Tk = +∞ if T ≥ k
and Tk = q2−k if (q − 1)2−k ≤ T < q 2−k, q < 2kk. Each Tk is a stopping
time and Tk decreases to T . �

Many concepts of classical potential theory can be expressed in an elegant
form in a probabilistic language. We give very briefly some examples with-
out proofs, but some hints to the literature.

Let Bt be Brownian motion in Rd and TA the hitting time of a set A ⊂ Rd.
Let D be a domain in Rd with boundary δ(D) such that the Green function
G(x, y) exists in D. Such a domain is then called a Green domain.

Definition. TheGreen function of a domainD is defined as the fundamental
solution satisfying ∆G(x, y) = δ(x−y), where δ(x−y) is the Dirac measure
at y ∈ D. Having the fundamental solution G, we can solve the Poisson
equation ∆u = v for a given function v by

u =

∫

D

G(x, y) · v(y) dy .

The Green function can be computed using Brownian motion as follows:

G(x, y) =

∫ ∞

0

g(t, x, y) dt ,

where for x ∈ D,
∫

C

g(t, x, y) dy = Px[Bt ∈ C, TδD > t]

and Px is the Wiener measure of Bt starting at the point x.

We can interpret that as follows. To determine G(x, y), consider the killed
Brownian motion Bt starting at x, where T is the hitting time of the bound-
ary. G(x, y) is then the probability density, of the particles described by the
Brownian motion.

Definition. The classical Dirichlet problem for a bounded Green domain
D ∈ Rd with boundary δD is to find for a given function f ∈ C(δ(D)), a
solution u ∈ C(D) such that ∆u = 0 inside D and

lim
x→y,x∈D

u(x) = f(y)

for every y ∈ δD.
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This problem can not be solved in general even for domains with piecewise
smooth boundaries if d ≥ 3.

Definition. The following example is called Lebesgue thorn or Lebesgue
spine has been suggested by Lebesgue in 1913. Let D be the inside of a
spherical chamber in which a thorn is punched in. The boundary δD is
held on constant temperature f , where f = 1 at the tip of the thorn y
and zero except in a small neighborhood of y. The temperature u inside
D is a solution of the Dirichlet problem ∆Du = 0 satisfying the boundary
condition u = f on the boundary δD. But the heat radiated from the thorn
is proportional to its surface area. If the tip is sharp enough, a person sitting
in the chamber will be cold, no matter how close to the heater. This means
lim infx→y,x∈D u(x) < 1 = f(y). (For more details, see [43, 46]).

Because of this problem, one has to modify the question and declares u is
a solution of a modified Dirichlet problem, if u satisfies ∆Du = 0 inside D
and limx→y,x∈D u(x) = f(y) for all nonsingular points y in the boundary
δD. Irregularity of a point y can be defined analytically but it is equivalent
with Py[TDc > 0] = 1, which means that almost every Brownian particle
starting at y ∈ δD will return to δD after positive time.

Theorem 4.5.7 (Kakutani 1944). The solution of the regularized Dirichlet
problem can be expressed with Brownian motion Bt and the hitting time
T of the boundary:

u(x) = Ex[f(BT )] .

In words, the solution u(x) of the Dirichlet problem is the expected value
of the boundary function f at the exit point BT of Brownian motion Bt
starting at x. We have seen in the previous chapter that the discretized
version of this result on a graph is quite easy to prove.

Figure. To solve the Dirichlet
problem in a bounded domain
with Brownian motion, start the
process at the point x and run it
until it reaches the boundary BT ,
then compute f(BT ) and aver-
age this random variable over all
paths ω.
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Remark. Ikeda has discovered that there exists also a probabilistic method
for solving the classical von Neumann problem in the case d = 2. For more
information about this, one can consult [43, 80]. The process for the von
Neumann problem is not the process of killed Brownian motion, but the
process of reflected Brownian motion.

Remark. Given the Dirichlet Laplacian ∆ of a bounded domain D. One
can compute the heat flow e−t∆u by the following formula

(e−t∆u)(x) = Ex[u(Bt); t < T ] ,

where T is the hitting time of δD for Brownian motion Bt starting at x.

Remark. Let K be a compact subset of a Green domain D. The hitting
probability

p(x) = Px[TK < TδD]

is the equilibrium potential of K relative to D. We give a definition of the
equilibrium potential later. Physically, the equilibrium potential is obtained
by measuring the electrostatic potential, if one is grounding the conducting
boundary and charging the conducting set B with a unit amount of charge.

4.6 Continuous time martingales

Definition. Given a filtration At of the probability space (Ω,A,P). A real-
valued process Xt ∈ L1 which is At adapted is called a submartingale, if
E[Xt|As] ≥ Xs, it is called a supermartingale if −X is a submartingale
and a martingale, if it is both a super and sub-martingale. If additionally
Xt ∈ Lp for all t, we speak of Lp super or sub-martingales.

We have seen martingales for discrete time already in the last chapter.
Brownian motion gives examples with continuous time.

Proposition 4.6.1. Let Bt be standard Brownian motion. Then Bt, B
2
t − t

and eαBt−α2t/2 are martingales.

Proof. Bt −Bs is independent of Bs. Therefore

E[Bt | As]−Bs = E[Bt −Bs|As] = E[Bt − Bs] = 0 .

Since by the ”extracting knowledge” property

E[BtBs | As] = Bs · E[Bt | As] = 0 ,

we get

E[B2
t − t | As]− (B2

s − s) = E[B2
t −B2

s | As]− (t− s)

= E[(Bt −Bs)
2 | As]− (t− s) = 0 .
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Since Brownian motion begins at any time s new, we have

E[eα(Bt−Bs)|As] = E[eαBt−s ] = eα
2(t−s)/2

from which
E[eαBt |As]e

−α2t/2 = E[eαBs ]e−α
2s/2

follows. �

As in the discrete case, we remark:

Proposition 4.6.2. If Xt is a Lp-martingale, then |Xt|p is a submartingale
for p ≥ 1.

Proof. The conditional Jensen inequality gives

E[|Xt|p|As] ≥ |E[Xt|As]|p = |Xs|p .
�

Example. Let Xn be a sequence of IID exponential distributed random
variables with probability density fX(x) = e−cxc. Let Sn =

∑n
k=1Xk. The

Poisson process Nt with time T = R+ = [0,∞) is defined as

Nt =

∞
∑

k=1

1Sk≤t .

It is an example of a martingale which is not continuous, This process
takes values in N and measures, how many jumps are necessary to reach
t. Since E[Nt] = ct, it follows that Nt − ct is a martingale with respect to
the filtration At = σ(Ns, s ≤ t). It is a right continuous process. We know
therefore that it is progressively measurable and that for each stopping
time T , also NT is progressively measurable. See [49] or the last chapter
for more information about Poisson processes.

Figure. The Poisson point pro-
cess on the line. Nt is the num-
ber of events which happen up to
time t. It could model for exam-
ple the number Nt of hits onto a
website.

1 2 3 4 5 6 7 8 9 10X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11S S S S S S S S S S S
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Proposition 4.6.3. (Interval theorem) The Poisson process has independent
increments

Nt −Ns =
∞
∑

n=1

1s<Sn≤t .

Moreover, Nt is Poisson distributed with parameter tc:

P[Nt = k] =
(tc)k

k!
e−tc .

Proof. The proof is done by starting with a Poisson distributed process Nt.
Define then

Sn(ω) = {t | Nt = n,Nt−0 = n− 1 }
and show that Xn = Sn − Sn−1 are independent random variables with
exponential distribution. �

Remark. Poisson processes on the lattice Zd are also called Brownian mo-
tion on the lattice and can be used to describe Feynman-Kac formulas for
discrete Schrödinger operators. The process is defined as follows: take Xt

as above and define

Yt =
∞
∑

k=1

Zk1Sk≤t ,

where Zn are IID random variables taking values in {m ∈ Zd||m| = 1}.
This means that a particle stays at a lattice site for an exponential time
and jumps then to one of the neighbors of n with equal probability. Let
Pn be the analog of the Wiener measure on right continuous paths on the
lattice and denote with En the expectation. The Feynman-Kac formula for
discrete Schrödinger operators H = H0 + V is

(e−itHu)(n) = e2dtEn[u(Xt)i
Nte−i

∫
t
0
V (Xs) ds] .

4.7 Doob inequalities

We have already established inequalities of Doob for discrete times T = N.
By a limiting argument, they hold also for right-continuous submartingales.

Theorem 4.7.1 (Doob’s submartingale inequality). Let X be a non-negative
right continuous submartingale with time T = [a, b]. For any ǫ > 0

ǫ · P[ sup
a≤t≤b

Xt ≥ ǫ] ≤ E[Xb; { sup
a≤t≤b

Xt ≥ ǫ}] ≤ E[Xb] .
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Proof. Take a countable subset D of T and choose an increasing sequence
Dn of finite sets such that

⋃

nDn = D. We know now that for all n

ǫ · P[ sup
t∈Dn

Xt ≥ ǫ] ≤ E[Xb; { sup
t∈Dn

Xt ≥ ǫ}] ≤ E[Xb] .

since E[Xt] is nondecreasing in t. Going to the limit n→ ∞ gives the claim
with T = D. Since X is right continuous, we get the claim for T = [a, b]. �

One often applies this inequality to the non-negative submartingale |X | if
X is a martingale.

Theorem 4.7.2 (Doob’s Lp inequality). Fix p > 1 and q satisfying p−1 +
q−1 = 1. Given a non-negative right-continuous submartingale X with
time T = [a, b] which is bounded in Lp. Then X∗ = supt∈T Xt is in Lp and
satisfies

||X∗||p ≤ q · sup
t∈T

||Xt||p .

Proof. Take a countable subset D of T and choose an increasing sequence
Dn of finite sets such that

⋃

nDn = D.
We had

|| sup
t∈Dn

Xt|| ≤ q · sup
t∈Dn

||Xt||p .

Going to the limit gives

|| sup
t∈D

Xt|| ≤ q · sup
t∈D

||Xt||p .

Since D is dense and X is right continuous we can replace D by T . �

The following inequality measures, how big is the probability that one-
dimensional Brownian motion will leave the cone {(t, x), |x| ≤ a · t}.

Theorem 4.7.3 (Exponential inequality). St = sup0≤s≤t Bs satisfies for any
a > 0

P[St ≥ a · t] ≤ e−a
2t/2 .

Proof. We have seen in proposition (4.6.1) that Mt = eαBt−α2t
2 is a mar-

tingale. It is nonnegative. Since

exp(αSt −
α2t

2
) ≤ exp(sup

s≤t
Bs −

α2t

2
) ≤ sup

s≤t
exp(Bs −

α2s

2
) = sup

s≤t
Ms ,
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we get with Doob’s submartingale inequality (4.7.1)

P[St ≥ at] ≤ P[sup
s≤t

Ms ≥ eαat−
α2t
2 ]

≤ exp(−αat+ α2t

2
)E[Mt] .

The result follows from E[Bt] = E[B0] = 1 and infα>0 exp(−αat + α2t
2 ) =

exp(−a2t
2 ). �

An other corollary of Doob’s maximal inequality will also be useful.

Corollary 4.7.4. For a, b > 0,

P[ sup
s∈[0,1]

(Bs −
αs

2
) ≥ β] ≤ e−αβ .

Proof.

P[ sup
s∈[0,1]

(Bs −
αs

2
) ≥ β] ≤ P[ sup

s∈[0,1]

(Bs −
αt

2
) ≥ β]

= P[ sup
s∈[0,1]

(eαBs−α2t
2 ) ≥ eβα]

= P[ sup
s∈[0,1]

Ms ≥ eβα]

≤ e−βα sup
s∈[0,1]

E[Ms] = e−βα

since E[Ms] = 1 for all s. �

4.8 Khintchine’s law of the iterated logarithm

Khinchine’s law of the iterated logarithm for Brownian motion gives a pre-
cise statement about how one-dimensional Brownian motion oscillates in a
neighborhood of the origin. As in the law of the iterated logarithm, define

Λ(t) =
√

2t log | log t| .

Theorem 4.8.1 (Law of iterated logarithm for Brownian motion).

P[lim sup
t→0

Bt
Λ(t)

= 1] = 1, P[lim inf
t→0

Bt
Λ(t)

= −1] = 1
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Proof. The second statement follows from the first by changing Bt to −Bt.

(i) lim sups→0
Bs

Λ(s) ≤ 1 almost everywhere:

Take θ, δ ∈ (0, 1) and define

αn = (1 + δ)θ−nΛ(θn), βn =
Λ(θn)

2
.

We have αnβn = log log(θn)(1 + δ) = log(n) log(θ). From corollary (4.7.4),
we get

P[sup
s≤1

(Bs −
αns

2
) ≥ βn] ≤ e−αnβn = Kn(−1+δ) .

The Borel-Cantelli lemma assures

P[lim inf
n→∞

sup
s≤1

(Bs −
αns

2
) < βn] = 1

which means that for almost every ω, there is n0(ω) such that for n > n0(ω)
and s ∈ [0, θn−1),

Bs(ω) ≤ αn
s

2
+ βn ≤ αn

θn−1

2
+ βn = (

(1 + δ)

2θ
+

1

2
)Λ(θn) .

Since Λ is increasing on a sufficiently small interval [0, a), we have for
sufficiently large n and s ∈ (θn, θn−1]

Bs(ω) ≤ (
(1 + δ)

2θ
+

1

2
)Λ(s) .

In the limit θ → 1 and δ → 0, we get the claim.

(ii) lim sups→0
Bs

Λ(s) ≥ 1 almost everywhere.

For θ ∈ (0, 1), the sets

An = {Bθn −Bθn+1 ≥ (1 −
√
θ)Λ(θn)}

are independent and since Bθn −Bθn+1 is Gaussian we have

P[An] =

∫ ∞

a

e−u
2/2 du√

2π
>

a

a2 + 1
e−a

2/2

with a = (1 −
√
θ)Λ(θn) ≤ Kn−α with some constants K and α < 1.

Therefore
∑

n P[An] = ∞ and by the second Borel-Cantelli lemma,

Bθn ≥ (1−
√
θ)Λ(θn) +Bθn+1 (4.1)

for infinitely many n. Since −B is also Brownian motion, we know from (i)
that

−Bθn+1 < 2Λ(θn+1) (4.2)

for sufficiently large n. Using these two inequalities (4.1) and (4.2) and
Λ(θn+1) ≤ 2

√
θΛ(θn) for large enough n, we get

Bθn > (1−
√
θ)Λ(θn)− 4Λ(θn+1) > Λ(θn)(1 −

√
θ − 4

√
θ)



4.8. Khintchine’s law of the iterated logarithm 229

for infinitely many n and therefore

lim inf
t→0

Bt
Λ(t)

≥ lim sup
n→∞

Bθn

Λ(θn)
> 1− 5

√
θ .

The claim follows for θ → 0. �

Remark. This statement shows also that Bt changes sign infinitely often
for t → 0 and that Brownian motion is recurrent in one dimension. One
could show more, namely that the set {Bt = 0 } is a nonempty perfect set
with Hausdorff dimension 1/2 which is in particularly uncountable.

By time inversion, one gets the law of iterated logarithm near infinity:

Corollary 4.8.2.

P[lim sup
t→∞

Bt
Λ(t)

= 1] = 1, P[lim inf
t→∞

Bt
Λ(t)

= −1] = 1 .

Proof. Since B̃t = tB1/t (with B̃0 = 0) is a Brownian motion, we have with
s = 1/t

1 = lim sup
s→0

B̃s
Λ(s)

= lim sup
s→0

s
B1/s

Λ(s)

= lim sup
t→∞

Bt
tΛ(1/t)

= lim sup
t→∞

Bt
Λ(t)

.

The other statement follows again by reflection. �

Corollary 4.8.3. For d-dimensional Brownian motion, one has

P[lim sup
t→0

Bt
Λ(t)

= 1] = 1, P[lim inf
t→0

Bt
Λ(t)

= −1] = 1

Proof. Let e be a unit vector in Rd. Then Bt · e is a 1-dimensional Brown-
ian motion since Bt was defined as the product of d orthogonal Brownian
motions. From the previous theorem, we have

P[lim sup
t→0

Bt · e
Λ(t)

= 1] = 1 .

Since Bt · e ≤ |Bt|, we know that the lim sup is ≥ 1. This is true for all
unit vectors and we can even get it simultaneously for a dense set {en}n∈N
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of unit vectors in the unit sphere. Assume the lim sup is 1 + ǫ > 1. Then,
there exists en such that

P[lim sup
t→0

Bt · en
Λ(t)

≥ 1 +
ǫ

2
] = 1

in contradiction to the law of iterated logarithm for Brownian motion.
Therefore, we have lim sup = 1. By reflection symmetry, lim inf = −1. �

Remark. It follows that in d dimensions, the set of limit points of Bt/Λ(t)
for t→ 0 is the entire unit ball {|v| ≤ 1}.

4.9 The theorem of Dynkin-Hunt

Definition. Denote by I(k, n) the interval [k−1
2n , k2n ). If T is a stopping time,

then T (n) denotes its discretisation

T (n)(ω) =

∞
∑

k=1

1I(k,n)(T (ω))
k

2n

which is again a stopping time. Define also:

AT+ = {A ∈ A∞ | A ∩ {T < t } ∈ At, ∀t } .

The next theorem tells that Brownian motion starts afresh at stopping
times.

Theorem 4.9.1 (Dynkin-Hunt). Let T be a stopping time for Brownian
motion, then B̃t = Bt+T − BT is Brownian motion when conditioned to
{T <∞} and B̃t is independent of AT+ when conditioned to {T <∞}.

Proof. Let A be the set {T <∞}. The theorem says that for every function

f(Bt) = g(Bt+t1 , Bt+t2 , . . . , Bt+tn)

with g ∈ C(Rn)

E[f(B̃t)1A] = E[f(Bt)] · P[A]
and that for every set C ∈ AT+

E[f(B̃t)1A∩C ] · P[A] = E[f(B̃t)1A] · P[A ∩ C] .

This two statements are equivalent to the statement that for every C ∈ AT+

E[f(B̃t) · 1A∩C ] = E[f(Bt)] · P[A ∩ C] .
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Let T (n) be the discretisation of the stopping time T and An = {T (n) <∞}
as well as An,k = {T (n) = k/2n}. Using A = {T <∞},P[⋃∞

k=1 An,k∩C] →
P[A ∩ C] for n→ ∞, we compute

E[f(B̃t)1A∩C ] = lim
n→∞

E[f(BT (n))1An∩C ]

= lim
n→∞

∞
∑

k=0

E[f(Bk/2n)1An,k∩C ]

= lim
n→∞

∞
∑

k=0

E[f(B0)] · P[An,k ∩C]

= E[f(B0)] lim
n→∞

P[

∞
⋃

k=1

An,k ∩ C]

= E[f(B0)1A∩C ]

= E[f(B0)] · P[A ∩ C]
= E[f(Bt)] · P[A ∩ C] .

�

Remark. If T < ∞ almost everywhere, no conditioning is necessary and
Bt+T −BT is again Brownian motion.

Theorem 4.9.2 (Blumental’s zero-one law). For every set A ∈ A0+ we have
P[A] = 0 or P[A] = 1.

Proof. Take the stopping time T which is identically 0. Now B̃ = Bt+T −
Bt = B. By Dynkin-Hunt’s result, we know that B̃ = B is independent of
BT+ = A0+ . Since every C ∈ A0+ is {Bs, s > 0} measurable, we know that
A0+ is independent to itself. �

Remark. This zero-one law can be used to define regular points on the
boundary of a domain D ∈ Rd. Given a point y ∈ δD. We say it is regular,
if Py[TδD > 0] = 0 and irregular Py[TδD > 0] = 1. This definition turns
out to be equivalent to the classical definition in potential theory: a point
y ∈ δD is irregular if and only if there exists a barrier function f : N → R

in a neighborhood N of y. A barrier function is defined as a negative sub-
harmonic function on int(N ∩ D) satisfying f(x) → 0 for x → y within
D.

4.10 Self-intersection of Brownian motion

Our aim is to prove the following theorem:
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Theorem 4.10.1 (Self intersections of random walk). For d ≤ 3, Brownian
motion has infinitely many self intersections with probability 1.

Remark. Kakutani, Dvoretsky and Erdös have shown that for d > 3, there
are no self-intersections with probability 1. It is known that for d ≤ 2, there
are infinitely many n−fold points and for d ≥ 3, there are no triple points.

Proposition 4.10.2. LetK be a compact subset of Rd and T the hitting time
ofK with respect to Brownian motion starting at y. The hitting probability
h(y) = P[y + Bs ∈ K,T ≤ s <∞] is a harmonic function on Rd \K.

Proof. Let Tδ be the hitting time of Sδ = {|x − y| = δ}. By the law of
iterated logarithm, we have Tδ < ∞ almost everywhere. By Dynkin-Hunt,
we know that B̃t = Bt+Tδ

−Bt is again Brownian motion.

If δ is small enough, then y + Bs /∈ K for t ≤ Tδ. The random variable
BTδ

∈ Sδ has a uniform distribution on Sδ because Brownian motion is
rotational symmetric. We have therefore

h(y) = P[y +Bs ∈ K, s ≥ Tδ]

= P[y +BTδ
+ B̃ ∈ K]

=

∫

Sδ

h(y + x) dµ(x) ,

where µ is the normalized Lebesgue measure on Sδ. This equality for small
enough δ is the definition of harmonicity. �

Proposition 4.10.3. Let K be a countable union of closed balls. Then
h(K, y) → 1 for y → K.

Proof. (i) We show the claim first for one ballK = Br(z) and letR = |z−y|.
By Brownian scaling Bt ∼ c · Bt/c2 . The hitting probability of K can only
be a function f(r/R) of r/R:

h(y,K) = P[y +Bs ∈ K,T ≤ s] = P[cy +Bs/c2 ∈ cK, TK ≤ s]

= P[cy +Bs/c2 ∈ cK, TcK ≤ s/c2]

= P[cy +Bs̃, TcK ≤ s̃]

= h(cy, cK) .
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We have to show therefore that f(x) → 1 as x→ 1. By translation invari-
ance, we can fix y = y0 = (1, 0, . . . , 0) and change Kα, which is a ball of
radius α around (−α, 0, . . . ). We have

h(y0,Kα) = f(α/(1 + α))

and take therefore the limit α → ∞

lim
x→1

f(x) = lim
α→∞

h(y0,Kα) = h(y0,
⋃

Kα)

= E[inf
s≥0

(Bs)1 < −1] = 1

because of the law of iterated logarithm.
(ii) Given yn → y0 ∈ K. Then y0 ∈ K0 for some ball K0.

lim inf
n→∞

h(yn,K) ≥ lim
n→∞

h(yn,K0) = 1

by (i). �

Definition. Let µ be a probability measure on R3. Define the potential
theoretical energy of µ as

I(µ) =

∫

R3

∫

R3

|x− y|−1 dµ(x) dµ(y) .

Given a compact set K ⊂ R3, the capacity of K is defined as

( inf
µ∈M(K)

I(µ))−1 ,

where M(K) is the set of probability measures on K. A measure on K
minimizing the energy is called an equilibrium measure.

Remark. This definitions can be done in any dimension. In the case d =
2, one replaces |x − y|−1 by log |x − y|−1. In the case d ≥ 3, one takes
|x− y|−(d−2). The capacity is for d = 2 defined as exp(− infµ I(µ)) and for
d ≥ 3 as (infµ I(µ))

−(d−2).

Definition. We say a measure µn on Rd converges weakly to µ, if for all con-
tinuous functions f ,

∫

f dµn →
∫

f dµ. The set of all probability measures
on a compact subset E of Rd is known to be compact.

The next proposition is part of Frostman’s fundamental theorem of poten-
tial theory. For detailed proofs, we refer to [39, 81].

Proposition 4.10.4. For every compact set K ⊂ Rd, there exists an equilib-
rium measure µ on K and the equilibrium potential

∫

|x − y|−(d−2) dµ(y)
rsp.

∫

log(|x − y|−1) dµ(y) takes the value C(K)−1 on the support K∗ of
µ.
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Proof. (i) (Lower semicontinuity of energy) If µn converges to µ, then

lim inf
n→∞

I(µn) ≥ I(µ) .

(ii) (Existence of equilibriummeasure) The existence of an equilibrium mea-
sure µ follows from the compactness of the set of probability measures on
K and the lower semicontinuity of the energy since a lower semi-continuous
function takes a minimum on a compact space. Take a sequence µn such
that

I(µn) → inf
µ∈M(K)

I(µ) .

Then µn has an accumulation point µ and I(µ) ≤ infµ∈M(K) I(µ).

(iii) (Value of capacity) If the potential φ(x) belonging to µ is constant on
K, then it must take the value C(K)−1 since

∫

φ(x) dµ(x) = I(µ) .

(iv) (Constancy of capacity) Assume the potential is not constant C(K)−1

on K∗. By constructing a new measure on K∗ one shows then that one can
strictly decrease the energy. This is physically evident if we think of φ as
the potential of a charge distribution µ on the set K. �

Corollary 4.10.5. Let µ be the equilibrium distribution on K. Then

h(y,K) = φµ · C(K)

and therefore h(y,K) ≥ C(K) · infx∈K |x− y|−1.

Proof. Assume first K is a countable union of balls. According to proposi-
tion (4.10.2) and proposition (4.10.3), both functions h and φµ · C(K) are
harmonic, zero at ∞ and equal to 1 on δ(K). They must therefore be equal.
For a general compact set K, let {yn} be a dense set in K and let Kǫ =
⋃

nBǫ(yn). One can pass to the limit ǫ→ 0. Both h(y,Kǫ) → h(y,K) and
infx∈Kǫ |x − y|−1 → infx∈K |x − y|−1 are clear. The statement C(Kǫ) →
C(K) follows from the upper semicontinuity of the capacity: if Gn is a se-
quence of open sets with ∩Gn = E, then C(Gn) → C(E).
The upper semicontinuity of the capacity follows from the lower semicon-
tinuity of the energy. �
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Proposition 4.10.6. Assume, the dimension d = 3. For any interval J =
[a, b], the set

BJ(ω) = {Bt(ω) | t ∈ [a, b]}
has positive capacity for almost all ω.

Proof. We have to find a probability measure µ(ω) on BI(ω) such that its
energy I(µ(ω)) is finite almost everywhere. Define such a measure by

dµ(A) = | {s ∈ [a, b] | Bs ∈ A}
(b− a)

| .

Then

I(µ) =

∫ ∫

|x− y|−1 dµ(x)dµ(y) =

∫ b

a

∫ b

a

(b− a)−1|Bs −Bt|−1 dsdt .

To see the claim we have to show that this is finite almost everywhere, we
integrate over Ω which is by Fubini

E[I(µ)] =

∫ b

a

∫ b

a

(b− a)−1E[|Bs −Bt|−1] dsdt

which is finite since Bs − Bt has the same distribution as
√
s− tB1 by

Brownian scaling and since E[|B1|−1] =
∫

|x|−1e−|x|2/2 dx < ∞ in dimen-

sion d ≥ 2 and
∫ b

a

∫ b

a

√
s− t ds dt <∞. �

Now we prove the theorem

Proof. We have only to show that in the case d = 3. Because Brownian
motion projected to the plane is two dimensional Brownian and to the line
is one dimensional Brownian motion, the result in smaller dimensions fol-
low.

(i) α = P[
⋃

t∈[0,1],s≥2Bt = Bs] > 0.

Proof. Let K be the set
⋃

t∈[0,1]Bt. We know that it has positive capacity

almost everywhere and that therefore h(Bs,K) > 0 almost everywhere.
But h(Bs,K) = α since Bs+2 − Bs is Brownian motion independent of
Bs, 0 ≤ s ≤ 1.

(ii) αT = P[
⋃

t∈[0,1],2≤T Bt = Bs] > 0 for some T > 0. Proof. Clear since
αT → α for T → ∞.
(iii) Proof of the claim. Define the random variables Xn = 1Cn with

Cn = {ω | Bt = Bs, for some t ∈ [nT, nT + 1], s ∈ [nT + 2, (n+ 1)T ] } .

They are independent and by the strong law of large numbers
∑

nXn = ∞
almost everywhere. �
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Corollary 4.10.7. Any point Bs(ω) is an accumulation point of self-crossings
of {Bt(ω)}t≥0.

Proof. Again, we have only to treat the three dimensional case. Let T > 0
be such that

αT = P[
⋃

t∈[0,1],2≤T
Bt = Bs] > 0

in the proof of the theorem. By scaling,

P[Bt = Bs | t ∈ [0, β], s ∈ [2β, Tβ] ]

is independent of β. We have thus self-intersections of the random walk in
any interval [0, b] and by translation in any interval [a, b]. �

4.11 Recurrence of Brownian motion

We show in this section that like its discrete brother, the random walk,
Brownian motion is transient in dimensions d ≥ 3 and recurrent in dimen-
sions d ≤ 2.

Lemma 4.11.1. Let T be a finite stopping time and RT (ω) be a rotation in
Rd which turns BT (ω) onto the first coordinate axis

RT (ω)BT (ω) = (|BT (ω)|, 0, . . . 0) .

Then B̃t = RT (Bt+T −BT ) is again Brownian motion.

Proof. By the Dynkin-Hunt theorem, B̃t = Bt+T −BT is Brownian motion
and independent of AT . By checking the definitions of Brownian motion,
it follows that if B is Brownian motion, also R(x)Bt is Brownian motion,
if R(x) is a random rotation on Rd independent of Bt. Since RT is AT

measurable and B̃t is independent of AT , the claim follows. �

Lemma 4.11.2. Let Kr be the ball of radius r centered at 0 ∈ Rd with
d ≥ 3. We have for y /∈ Kr

h(y,Kr) = (r/|y|)d−2 .
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Proof. Both h(y,Kr) and (r/|y|)d−2 are harmonic functions which are 1 at
δKr and zero at infinity. They are the same. �

Theorem 4.11.3 (Escape of Brownian motion in three dimensions). For
d ≥ 3, we have limt→∞ |Bt| = ∞ almost surely.

Proof. Define a sequence of stopping times Tn by

Tn = inf{s > 0 | |Bs| = 2n} ,
which is finite almost everywhere because of the law of iterated logarithm.
We know from the lemma (4.11.1) that

B̃t = RTn(Bt+Tn −BTn)

is a copy of Brownian motion. Clearly also |BTn | = 2n.
We have Bs ∈ Kr(0) = {|x| < r} for some s > Tn if and only if B̃t ∈
(2n, 0 . . . , 0) +Kr(0) for some t > 0.
Therefore using the previous lemma

P[Bs ∈ Kr(0); s > Tn] = P[B̃t ∈ (2n, 0 . . . , 0) +Kr(0); t > 0] = (
r

2n
)d−2

which implies in the case r2−n < 1 by the Borel-Cantelli lemma that for
almost all ω, Bs(ω) ≥ r for s > Tn. Since Tn is finite almost everywhere,
we get lim infs |Bs| ≥ r. Since r is arbitrary, the claim follows. �

Brownian motion is recurrent in dimensions d ≤ 2. In the case d = 1, this
follows readily from the law of iterated logarithm. First a lemma

Lemma 4.11.4. In dimensions d = 2, almost every path of Brownian motion
hits a ball Kr if r > 0: one has h(y,K) = 1.

Proof. We know that h(y) = h(y,K) is harmonic and equal to 1 on δK. It
is also rotational invariant and therefore h(y) = a+b log |y|. Since h ∈ [0, 1]
we have h(y) = a and so a = 1. �

Theorem 4.11.5 (Recurrence of Brownian motion in 1 or 2 dimensions). Let
d ≤ 2 and S be an open nonempty set in Rd. Then the Lebesgue measure
of {t | Bt ∈ S} is infinite.
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Proof. It suffices to take S = Kr(x0), a ball of radius r around x0. Since
by the previous lemma, Brownian motion hits every ball almost surely, we
can assume that x0 = 0 and by scaling that r = 1.
Define inductively a sequence of hitting or leaving times Tn, Sn of the
annulus {1/2 < |x| < 2}, where T1 = inf{t | |Bt| = 2} and

Sn = inf{t > Tn | |Bt| = 1/2}
Tn = inf{t > Sn−1 | |Bt| = 2} .

These are finite stopping times. The Dynkin-Hunt theorem shows that Sn−
Tn and Tn − Sn−1 are two mutually independent families of IID random
variables. The Lebesgue measures Yn = |In| of the time intervals

In = {t | |Bt| ≤ 1, Tn ≤ t ≤ Tn+1 } ,

are independent random variables. Therefore, also Xn = min(1, Yn) are
independent bounded IID random variables. By the law of large numbers,
∑

nXn = ∞ which implies
∑

n Yn = ∞ and the claim follows from

|{t ∈ [0,∞) | |Bt| ≤ 1 }| ≥
∑

n

Tn .

�

Remark. Brownian motion in Rd can be defined as a diffusion on Rd with
generator ∆/2, where ∆ is the Laplacian on Rd. A generalization of Brow-
nian motion to manifolds can be done using the diffusion processes with
respect to the Laplace-Beltrami operator. Like this, one can define Brown-
ian motion on the torus or on the sphere for example. See [58].

4.12 Feynman-Kac formula

In quantum mechanics, the Schrödinger equation i~u̇ = Hu defines the
evolution of the wave function u(t) = e−itH/~u(0) in a Hilbert spaceH. The
operatorH is theHamiltonian of the system. We assume, it is a Schrödinger
operator H = H0 + V , where H0 = −∆/2 is the Hamiltonian of a free
particle and V : Rd → R is the potential. The free operator H0 already is
not defined on the whole Hilbert space H = L2(Rd) and one restricts H to
a vector space D(H) called domain containing the in H dense set C∞

0 (Rd)
of all smooth functions which are zero at infinity. Define

D(A∗) = {u ∈ H | v 7→ (Av, u) is a bounded linear functional on D(A)}.

If u ∈ D(A∗), then there exists a unique function w = A∗u ∈ H such that
(Av, u) = (v, w) for all u ∈ D(A). This defines the adjoint A∗ of A with
domain D(A∗).

Definition. A linear operator A : D(A) ⊂ H → H is called symmetric if
(Au, v) = (u,Av) for all u, v ∈ D(A) and self-adjoint, if it is symmetric and
D(A) = D(A∗).
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Definition. A sequence of bounded linear operators An converges strongly
to A, if Anu→ Au for all u ∈ H. One writes A = s− limn→∞ An.

Define eA = 1 + A + A2/2! + A3/3! + · · · . We will use the fact that a
self-adjoint operator defines a one parameter family of unitary operators
t 7→ eitA which is strongly continuous. Moreover, eitA leaves the domain
D(A) of A invariant. For more details, see [82, 7].

Theorem 4.12.1 (Trotter product formula). Given self-adjoint operators
A,B defined on D(A), D(B) ⊂ H. Assume A + B is self-adjoint on D =
D(A) ∩D(B), then

eit(A+B) = s− lim
n→∞

(eitA/neitB/n)n .

If A,B are bounded from below, then

e−t(A+B) = s− lim
n→∞

(e−tA/ne−tB/n)n .

Proof. Define

St = eit(A+B), Vt = eitA,Wt = eitB, Ut = VtWt

and vt = Stv for v ∈ D. Because A+B is self-adjoint on D, one has vt ∈ D.
Use a telescopic sum to estimate

||(St − Unt/n)v|| = ||
n−1
∑

j=0

U jt/n(St/n − Ut/n)S
n−j−1
t/n v||

≤ n sup
0≤s≤t

||(St/n − Ut/n)vs|| .

We have to show that this goes to zero for n → ∞. Given u ∈ D =
D(A) ∩D(B),

lim
s→0

Ss − 1

s
u = i(A+B)u = lim

s→0

Us − 1

s
u

so that for each u ∈ D

lim
n→∞

n · ||(St/n − Ut/n)u|| = 0 . (4.3)

The linear space D with norm |||u||| = ||(A + B)u|| + ||u|| is a Banach
space since A + B is self-adjoint on D and therefore closed. We have a
bounded family {n(St/n − Ut/n)}n∈N of bounded operators from D to H.
The principle of uniform boundedness states that

||n(St/n − Ut/n)u|| ≤ C · |||u||| .
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An ǫ/3 argument shows that the limit (4.3) exists uniformly on compact
subsets of D and especially on {vs}s∈[0,t] ⊂ D and so n sup0≤s≤t ||(St/n −
Ut/n)vs|| = 0. The second statement is proved in exactly the same way. �

Remark. Trotter’s product formula generalizes the Lie product formula

lim
n→∞

(exp(
A

n
) exp(

B

n
))n = exp(A+B)

for finite dimensional matrices A,B, which is a special case.

Corollary 4.12.2. (Feynman 1948) Assume H = H0 + V is self-adjoint on
D(H). Then

e−itHu(x0) = lim
n→∞

(
2πit

n
)−d/2

∫

(Rd)n
eiSn(x0,x1,x2,...,xn,t)u(xn) dx1 . . . dxn

where

Sn(x0, x1, . . . , xn, t) =
t

n

n
∑

i=1

1

2
(
|xi − xi−1|

t/n
)2 − V (xi) .

Proof. (Nelson) From u̇ = −iH0u, we get by Fourier transform ˙̂u = i |k|
2

2 û

which gives ût(k) = exp(i |k|
2|
2 t)û0(k) and by inverse Fourier transform

e−itH0u(x) = ut(x) = (2πit)−d/2
∫

Rd

ei
|x−y|2

2t u(y) dy .

The Trotter product formula

e−it(H0+V ) = s− lim
n→∞

(eitH0/neitV/n)n

gives now the claim. �

Remark. We did not specify the set of potentials, for which H0+V can be
made self-adjoint. For example, V ∈ C∞

0 (Rν) is enough or V ∈ L2(R3) ∩
L∞(R3) in three dimensions.

We have seen in the above proof that e−itH0 has the integral kernel P̃t(x, y) =

(2πit)−d/2ei
|x−y|2

2t . The same Fourier calculation shows that e−tH0 has the
integral kernel

Pt(x, y) = (2πt)−d/2e−
|x−y|2

2t ,

where gt is the density of a Gaussian random variable with variance t.
Note that even if u ∈ L2(Rd) is only defined almost everywhere, the func-
tion ut(x) = e−tH0u(x) =

∫

Pt(x − y)u(y)dy is continuous and defined
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everywhere.

Lemma 4.12.3. Given f1, . . . , fn ∈ L∞(Rd)∩L2(Rd) and 0 < s1 < · · · < sn.
Then

(e−t1H0f1 · · · e−tnH0fn)(0) =

∫

f1(Bs1) · · · fn(Bsn) dB,

where t1 = s1, ti = si − si−1, i ≥ 2 and the fi on the left hand side are
understood as multiplication operators on L2(Rd).

Proof. Since Bs1 , Bs2 − Bs1 , . . . Bsn − Bsn−1 are mutually independent
Gaussian random variables of variance t1, t2, . . . , tn, their joint distribu-
tion is

Pt1(0, y1)Pt2(0, y2) . . . Ptn(0, yn) dy

which is after a change of variables y1 = x1, yi = xi − xi−1

Pt1(0, x1)Pt2(x1, x2) . . . Ptn(xn−1, xn) dx .

Therefore,

∫

f1(Bs1) · · · fn(Bsn) dB
∫

(Rd)n
Pt1(0, y1)Pt2(0, y2) . . . Ptn(0, yn)f1(y1) . . . fn(yn) dy

=

∫

(Rd)n
Pt1(0, x1)Pt2(x1, x2) . . . Ptn(xn−1, xn)f1(x1) . . . fn(xn) dx

= (e−t1H0f1 · · · e−tnH0fn)(0) .

�

Denote by dB the Wiener measure on C([0,∞),Rd) and with dx the
Lebesgue measure on Rd. We define also an extended Wiener measure
dW = dx× dB on C([0,∞),Rd) on all paths s 7→Ws = x+Bs starting at
x ∈ Rd.

Corollary 4.12.4. Given f0, f1, . . . , fn ∈ L∞(Rd) ∩ L2(Rd) and 0 < s1 <
· · · < sn. Then

∫

f0(Ws0 ) · · · fn(Wsn) dW = (f0, e
−t1H0f1 · · · e−tnH0fn) .
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Proof. (i) Case s0 = 0. From the above lemma, we have after the dB
integration that

∫

f0(Ws0) · · · fn(Wsn) dW =

∫

Rd

f0(x)e
−t1H0f1(x) · · · e−tnH0fn(x) dx

= (f0, e
−t1H0f1 · · · e−tnH0fn) .

(ii) In the case s0 > 0 we have from (i) and the dominated convergence
theorem

∫

f0(Ws0 ) · · · fn(Wsn) dW

= lim
R→∞

∫

Rd

1{|x|<R}(W0)

f0(Ws0 ) · · · fn(Wsn) dW

= lim
R→∞

(f0e
−s0H01{|x|<R}, e

−t1H0f1 · · · e−tnH0fn(x))

= (f0, e
−t1H0f1 · · · e−tnH0fn) .

�

We prove now the Feynman-Kac formula for Schrödinger operators of the
form H = H0+V with V ∈ C∞

0 (Rd). Because V is continuous, the integral
∫ t

0 V (Ws(ω)) ds can be taken for each ω as a limit of Riemann sums and
∫ t

0 V (Ws) ds certainly is a random variable.

Theorem 4.12.5 (Feynman-Kac formula). Given H = H0 + V with V ∈
C∞

0 (Rd), then

(f, e−tHg) =

∫

f(W0)g(Wt)e
−

∫
t
0
V (Ws)) ds dW .

Proof. (Nelson) By the Trotter product formula

(f, e−tHg) = lim
n→∞

(f, (e−tH0/ne−tV/n)ng)

so that by corollary (4.12.4)

(f, e−tHg) = lim
n→∞

∫

f(W0)g(Wt) exp(−
t

n

n−1
∑

j=0

V (Wtj/n)) dW (4.4)

and since s 7→Ws is continuous, we have almost everywhere

t

n

n−1
∑

j=0

V (Wtj/n) →
∫ t

0

V (Ws) ds .
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The integrand on the right hand side of (4.4) is dominated by

|f(W0)| · |g(Wt)| · et||V ||∞

which is in L1(dW ) because again by corollary (4.12.4),
∫

|f(W0)| · |g(Wt)| dW = (|f |, e−tH0 |g|) <∞ .

The dominated convergence theorem (2.4.3) leads us now to the claim. �

Remark. The formula can be extended to larger classes of potentials like
potentials V which are locally in L1. The selfadjointness, which needed in
Trotter’s product formula, is assured if V ∈ L2 ∩ Lp with p > d/2. Also
Trotter’s product formula allows further generalizations [96, 31].

Why is the Feynman-Kac formula useful?

• One can use Brownian motion to study Schrödinger semigroups. It al-
lows for example to give an easy proof of the ArcSin-law for Brownian
motion.

• One can treat operators with magnetic fields in a unified way.

• Functional integration is a way of quantization which generalizes to
more situations.

• It is useful to study ground states and ground state energies under
perturbations.

• One can study the classical limit ~ → 0.

4.13 The quantum mechanical oscillator

The one-dimensional Schrödinger operator

H = H0 + U = −1

2

d2

dx2
+

1

2
x2 − 1

2

is the Hamiltonian of the quantum mechanical oscillator. It is a quantum
mechanical system which can be solved explicitly like its classical analog,
which has the Hamiltonian H(x, p) = 1

2p
2 + 1

2x
2 − 1

2 .

One can write
H = AA∗ − 1 = A∗A ,

with

A∗ =
1√
2
(x − d

dx
), A =

1√
2
(x+

d

dx
) .

The first order operator A∗ is also called particle creation operator and A,
the particle annihilation operator. The space C∞

0 of smooth functions of
compact support is dense in L2(R). Because for all u, v ∈ C∞

0 (R)

(Au, v) = (u,A∗v)
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the two operators are adjoint to each other. The vector

Ω0 =
1

π1/4
e−x

2/2

is a unit vector because Ω2
0 is the density of a N(0, 1/

√
2) distributed ran-

dom variable. Because AΩ0 = 0, it is an eigenvector of H = A∗A with
eigenvalue 1/2. It is called the ground state or vacuum state describing the
system with no particle. Define inductively the n-particle states

Ωn =
1√
n
A∗Ωn−1

by creating an additional particle from the (n− 1)-particle state Ωn−1 .

Figure. The first Hermit func-
tions Ωn. They are unit vectors
in L2(R) defined by

Ωn(x) =
Hn(x)ω0(x)√

2nn!
,

where Hn(x) are Hermite poly-
nomials, H0(x) = 1, H1(x) =
2x,H2(x) = 4x2 − 2, H3(x) =
8x3 − 12x, . . . .

Theorem 4.13.1 (Quantum mechanical oscillator). The following properties
hold:
a) The functions are orthonormal (Ωn,Ωm) = δn,m.
b) AΩn =

√
nΩn−1, A

∗Ωn =
√
n+ 1Ωn+1.

c) (n− 1
2 ) are the eigenvalues of H

H = (A∗A− 1

2
)Ωn = (n− 1

2
)Ωn

.
d) The functions Ωn form a basis in L2(R).

Proof. Denote by [A,B] = AB − BA the commutator of two operators A
and B. We check first by induction the formula

[A, (A∗)n] = n · (A∗)n−1 .
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For n = 1, this means [A,A∗] = 1. The induction step is

[A, (A∗)n] = [A, (A∗)n−1]A∗ + (A∗)n−1[A,A∗]

= (n− 1)(A∗)n−1 + (A∗)n−1 = n(A∗)n−1 .

a) Also

((A∗)nΩ0, (A
∗)mΩ0) = n!δmn .

can be proven by induction. For n = 0 it follows from the fact that Ω0 is
normalized. The induction step uses [A, (A∗)n] = n · (A∗)n−1 and AΩ0 = 0:

((A∗)nΩ0, (A
∗)mΩ0) = (A(A∗)nΩ0(A

∗)m−1Ω0)

= ([A, (A∗)n]Ω0(A
∗)m−1Ω0)

= n((A∗)n−1Ω0, (A
∗)m−1Ω0) .

If n < m, then we get from this 0 after n steps, while in the case n = m,
we obtain ((A∗)nΩ0, (A

∗)nΩ0) = n · ((A∗)n−1Ω0, (A
∗)n−1Ω0), which is by

induction n(n− 1)!δn−1,n−1 = n!.

b) A∗Ωn =
√
n+ 1 · Ωn+1 is the definition of Ωn.

AΩn =
1√
n!
A(A∗)nΩ0 =

1√
n!
nΩ0 =

√
nΩn−1 .

c) This follows from b) and the definition Ωn = 1√
n
A∗Ωn−1.

d) Part a) shows that {Ωn}∞n=0 it is an orthonormal set in L2(R). In order
to show that they span L2(R), we have to verify that they span the dense
set

S = {f ∈ C∞
0 (R) | xmf (n)(x) → 0, |x| → ∞, ∀m,n ∈ N }

called the Schwarz space. The reason is that by the Hahn-Banach theorem,
a function f must be zero in L2(R) if it is orthogonal to a dense set. So,
lets assume (f,Ωn) = 0 for all n. Because A∗ +A =

√
2x

0 =
√
n!2n (f,Ωn) = (f, (A∗)nΩ0) = (f, (A∗ +A)nΩ0) = 2n/2 (f, xnΩ0)

we have

(fΩ0)
ˆ(k) =

∫ ∞

−∞
f(x)Ω0(x)e

ikx dx

= (f,Ω0e
ikx) = (f,

∑

n≥0

(ikx)n

n!
Ω0)

=
∑

n≥0

(ik)n

n!
(f, xnΩ0) = 0 .

and so fΩ0 = 0. Since Ω0(x) is positive for all x, we must have f = 0. This
finishes the proof that we have a complete basis. �
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Remark. This gives a complete solution to the quantum mechanical har-
monic oscillator. With the eigenvalues {λn = n−1/2}∞n=0 and the complete
set of eigenvectors Ωn one can solve the Schrödinger equation

i~
d

dt
u = Hu

by writing the function u(x) =
∑∞
n=0 unΩn(x) as a sum of eigenfuctions,

where un = (u,Ωn). The solution of the Schrödinger equation is

u(t, x) =
∞
∑

n=0

une
i~(n−1/2)tΩn(x) .

Remark. The formalism of particle creation and annihilation operators
can be extended to some potentials of the form U(x) = q2(x) − q′(x) the
operator H = −D2/2 + U/2 can then be written as H = A∗A, where

A∗ =
1√
2
(q(x) − d

dx
), A =

1√
2
(q(x) +

d

dx
) .

The oscillator is the special case q(x) = x. See [11]. The Bäcklund transfor-
mation H = A∗A 7→ H̃ = AA∗ is in the case of the harmonic oscillator the
map H 7→ H + 1 has the effect that it replaces U with Ũ = U − ∂2x logΩ0,
where Ω0 is the lowest eigenvalue. The new operator H̃ has the same spec-
trum as H except that the lowest eigenvalue is removed. This procedure
can be reversed and to create ”soliton potentials” out of the vacuum. It
is also natural to use the language of super-symmetry as introduced by
Witten: take two copies Hf ⊕Hb of the Hilbert space where ”f” stands for
Fermion and ”b” for Boson. With

Q =

[

0 A∗

A 0

]

, P =

[

1 0
0 −1

]

,

one can write H ⊕ H̃ = Q2, P 2 = 1, QP + PQ = 0 and one says (H,P,Q)
has super-symmetry. The operator Q is also called a Dirac operator. A
super-symmetric system has the property that nonzero eigenvalues have
the same number of bosonic and fermionic eigenstates. This implies that H̃
has the same spectrum as H except that lowest eigenvalue can disappear.

Remark. In quantum field theory, there exists a process called canonical
quantization, where a quantum mechanical system is extended to a quan-
tum field. Particle annihilation and creation operators play an important
role.

4.14 Feynman-Kac for the oscillator

We want to treat perturbations L = L0 + V of the harmonic oscillator
L0 with an similar Feynman-Kac formula. The calculation of the integral
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kernel pt(x, y) of e
−tL0 satisfying

(e−tL0f)(x) =

∫

R

pt(x, y)f(y) dy

is slightly more involved than in the case of the free Laplacian. Let Ω0 be
the ground state of L0 as in the last section.

Lemma 4.14.1. Given f0, f1, . . . , fn ∈ L∞(R) and −∞ < s0 < s1 < · · · <
sn <∞. Then

(Ω0, f0e
−t1L0f1 · · · e−tnL0fnΩ0) =

∫

f0(Qs0) · · · fn(Qsn) dQ ,

where t0 = s0, ti = si − si−1, i ≥ 1.

Proof. The Trotter product formula for L0 = H0 + U gives

(Ω0, f0e
−t1L0f1 · · · e−tnL0fnΩ0)

= lim
m=(m1,...,mn),mi→∞

(Ω0, f0(e
−t1H0/m1e−t1U/m1)m1f1 · · · e−tnH0fnΩ0)

=

∫

f0(x0) · · · fn(xn) dGm(x, y)

and Gm is a measure. Since e−tH0 has a Gaussian kernel and e−tU is a
multiple of a Gaussian density and integrals are Gaussian, the measure dGm
is Gaussian converging to a Gaussian measure dG. Since L0(xΩ0) = xΩ0

and (xΩ0, xΩ0) = 1/2 we have

∫

xixj dG = (xΩ0, e
−(sj−si)L0xΩ0) =

1

2
e−(sj−si)

which shows that dG is the joint probability distribution of Qs0 , . . . Qsn .
The claim follows. �

Theorem 4.14.2 (Mehler formula). The kernel pt(x, y) of L0 is given by the
Mehler formula

pt(x, y) =
1√
πσ2

exp

(

− (x2 + y2)(1 + e−2t)− 4xye−t

2σ2

)

.

with σ2 = (1 − e−2t).
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Proof. We have

(f, e−tL0g) =

∫

f(y)Ω−1
0 (y)g(x)Ω−1

0 (x) dG(x, y) =

∫

f(y)pt(x, y) dy

with the Gaussian measure dG having covariance

A =
1

2

[

1 e−t

e−t 1

]

.

We get Mehler’s formula by inverting this matrix and using that the density
is

(2π) det(A)−1/2e−((x,y),A(x,y)) .

�

Definition. Let dQ be the Wiener measure on C(R) belonging to the os-
cillator process Qt.

Theorem 4.14.3 (Feynman-Kac for oscillator process). Given L = L0 + V
with V ∈ C∞

0 (R), then

(fΩ0, e
−iLgΩ0) =

∫

f(Q0)g(Qt)e
−

∫ t
0
V (Qs)) ds dQ

for all f, g ∈ L2(R,Ω2
0dx).

Proof. By the Trotter product formula

(fΩ0, e
−iLgΩ0) = lim

n→∞
(fΩ0, (e

−tL0/ne−tV/n)ngΩ0)

so that

(fΩ0, e
−iLgΩ0) = lim

n→∞

∫

f(Q0)g(Qt) exp(−
t

n

n−1
∑

j=0

V (Qtj/n)) dQ . (4.5)

and since Q is continuous, we have almost everywhere

t

n

n−1
∑

j=0

V (Qtj/n) →
∫ t

0

V (Qs) ds .

The integrand on the right hand side of (4.5) is dominated by

|f(Q0)||g(Qt)|et||V ||∞

which is in L1(dQ) since
∫

|f(Q0)||g(Qt)| dQ = (Ω0|f |, e−tL0Ω0|g|) <∞ .

The dominated convergence theorem (2.4.3) gives the claim. �
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4.15 Neighborhood of Brownian motion

The Feynman-Kac formula can be used to understand the Dirichlet Lapla-
cian of a domain D ⊂ Rd. For more details, see [96].

Example. LetD be an open set in Rd such that the Lebesgue measure |D| is
finite and the Lebesgue measure of the boundary |δD| is zero. Denote byHD

the Dirichlet Laplacian −∆/2. Denote by kD(E) the number of eigenvalues
of HD below E. This function is also called the integrated density of states.
Denote with Kd the unit ball in Rd and with |Kd| = Vol(Kd) = πd/2Γ(d2 +
1)−1 its volume.Weyl’s formula describes the asymptotic behavior of kD(E)
for large E:

lim
E→∞

kD(E)

Ed/2
=

|Kd| · |D|
2d/2πd

.

It shows that one can read off the volume of D from the spectrum of the
Laplacian.

Example. Put n ice balls Kj,n, 1 ≤ j ≤ n of radius rn into a glass of water
so that n · rn = α. In order to know, how good this ice cools the water it is
good to know the lowest eigenvalue E1 of the Dirichlet Laplacian HD since
the motion of the temperature distribution u by the heat equation u̇ = HDu
is dominated by e−tE1 . This motivates to compute the lowest eigenvalue of
the domain D \⋃n

j=1Kj,n. This can be done exactly in the limit n → ∞
and when ice Kj,n is randomly distributed in the glass. Mathematically,
this is described as follows:
LetD be an open bounded domain in Rd. Given a sequence x = (x1, x2, . . . )
which is an element in DN and a sequence of radii r1, r2, . . . , define

Dn = D \
n
⋃

i=1

{|x− xi| ≤ rn} .

This is the domain D with n points balls Kj,n with center x1, . . . xn and ra-
dius rn removed. LetH(x, n) be the Dirichlet Laplacian onDn and Ek(x, n)
the k-th eigenvalue of H(x, n) which are random variable Ek(n) in x, if D

N

is equipped with the product Lebesgue measure. One can show that in the
case nrn → α

Ek(n) → Ek(0) + 2πα|D|−1

in probability. Random impurities produce a constant shift in the spectrum.
For the physical system with the crushed ice, where the crushing makes
nrn → ∞, there is much better cooling as one might expect.

Definition. Let Wδ(t) be the set

{x ∈ Rd | |x−Bt(ω)| ≤ δ, for some s ∈ [0, t]} .

It is of course dependent on ω and just a δ-neighborhood of the Brownian
path B[0,t](ω). This set is called Wiener sausage and one is interested in the
expected volume |Wδ(t)| of this set as δ → 0. We will look at this problem
a bit more closely in the rest of this section.
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Figure. A sample of Wiener
sausage in the plane d = 2. A
finite path of Brownian motion
with its neighborhood Wδ.

Lets first prove a lemma, which relates the Dirichlet LaplacianHD = −∆/2
on D with Brownian motion.

Lemma 4.15.1. Let D be a bounded domain in Rd containing 0 and
pD(x, y, t), the integral kernel of e−tH , where H is the Dirichlet Laplacian
on D. Then

E[Bs ∈ D; 0 ≤ s ≤ t] = 1−
∫

pD(0, x, t) dx .

Proof. (i) It is known that the Dirichlet Laplacian can be approximated in
the strong resolvent sense by operators H0 + λV , where V = 1Dc is the
characteristic function of the exterior Dc of D. This means that

(H0 + λ · V )−1u→ (HD − z)−1u, λ→ ∞

for z outside [0,∞) and all u ∈ C∞
c (Rd).

(ii) Since Brownian paths are continuous, we have
∫ t

0 V (Bs) ds > 0 if and
only if Bs ∈ Cc for some s ∈ [0, t]. We get therefore

e−λ
∫ t
0
V (Bs) ds → 1{Bs∈Dc }

point wise almost everywhere.

Let un be a sequence in C∞
c converging point wise to 1. We get with the

dominated convergence theorem (2.4.3), using (i) and (ii) and Feynman-
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Kac

E[Bs ∈ Dc; 0 ≤ s ≤ t] = lim
n→∞

E[un(Bs) ∈ Dc; 0 ≤ s ≤ t]

= lim
n→∞

lim
λ→∞

E[e−λ
∫ t
0
V (Bs) dsun(Bt)]

= lim
n→∞

lim
λ→∞

e−t(H0+λ·V )un(0)

= lim
n→∞

e−tHDun(0)

= lim
n→∞

∫

pD(0, x, t)un(0) dx =

∫

pD(0, x, t) dx .

�

Theorem 4.15.2 (Spitzer). In three dimensions d = 3,

E[|Wδ(t)|] = 2πδt+ 4δ2
√
2πt+

4π

3
δ3 .

Proof. Using Brownian scaling,

E[|Wλδ(λ
2t)|] = E[|{|x−Bs| ≤ λδ, 0 ≤ s ≤ λ2t}|]

= E[|{|x
λ
− Bs̃λ2

λ
| ≤ δ, 0 ≤ s̃ = s/λ2 ≤ t}|]

= E[|{|x
λ
−Bs̃| ≤ δ, 0 ≤ s̃ ≤ t}|]

= λ3 · E[|Wδ(t)|] ,

so that one assume without loss of generality that δ = 1: knowing E[|W1(t)|],
we get the general case with the formula E[|Wδ(t)|] = δ3 · E[|W1(δ

−2t)|].

Let K be the closed unit ball in Rd. Define the hitting probability

f(x, t) = P[x+Bs ∈ K; 0 ≤ s ≤ t] .

We have

E[|W1(t)|] =
∫

Rd

f(x, t) dx .

Proof.

E[|W1(t)|] =

∫ ∫

P[x ∈ W1(t)] dx dB

=

∫ ∫

P[Bs − x ∈ K; 0 ≤ s ≤ t] dx dB

=

∫ ∫

P[Bs − x ∈ K; 0 ≤ s ≤ t] dB dx

=

∫

f(x, t) dx .
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The hitting probability is radially symmetric and can be computed explic-
itly in terms of r = |x|: for |x| ≥ 1, one has

f(x, t) =
2

r
√
2πt

∫ ∞

0

e−
(|x|+z−1)2

2t dz .

Proof. The kernel of e−tH satisfies the heat equation

∂tp(x, 0, t) = (∆/2)p(x, 0, t)

inside D. From the previous lemma follows that ḟ = (∆/2)f , so that the

function g(r, t) = rf(x, t) satisfies ġ = ∂2

2(∂r)2 g(r, t) with boundary condition

g(r, 0) = 0, g(1, t) = 1. We compute

∫

|x|≥1

f(x, t) dx = 2πt+ 4
√
2πt

and
∫

|x|≤1
f(x, t) dx = 4π/3 so that

E[|W1(t)| = 2πt+ 4
√
2πt+ 4π/3 .

�

Corollary 4.15.3. In three dimensions, one has:

lim
δ→0

1

δ
E[|Wδ(t)|] = 2πt

and

lim
t→∞

1

t
· E[|Wδ(t)|] = 2πδ .

Proof. The proof follows immediately from Spitzer’s theorem (4.15.2). �

Remark. If Brownian motion were one-dimensional, then δ−2E[|Wδ(t)|]
would stay bounded as δ → 0. The corollary shows that the Wiener sausage
is quite ”fat”. Brownian motion is rather ”two-dimensional”.

Remark. Kesten, Spitzer and Wightman have got stronger results. It is
even true that limδ→0 |Wδ(t)|/t = 2πδ and limt→∞ |Wδ(t)|/t = 2πδ for
almost all paths.
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4.16 The Ito integral for Brownian motion

We start now to develop stochastic integration first for Brownian motion
and then more generally for continuous martingales. Lets start with a mo-
tivation. We know by theorem (4.2.5) that almost all paths of Brownian
motion are not differentiable. The usual Lebesgue-Stieltjes integral

∫ t

0

f(Bs)Ḃs ds

can therefore not be defined. We are first going to see, how a stochas-
tic integral can still be constructed. Actually, we were already dealing
with a special case of stochastic integrals, namely with Wiener integrals
∫ t

0
f(Bs) dBs, where f is a function on C([0,∞],Rd) which can contain for

example
∫ t

0
V (Bs) ds as in the Feynman-Kac formula. But the result of this

integral was a number while the stochastic integral, we are going to define,
will be a random variable.

Definition. Let Bt be the one-dimensional Brownian motion process and
let f be a function f : R → R. Define for n ∈ N the random variable

Jn(f) =

2n
∑

m=1

f(B(m−1)2−n)(Bm2−n −B(m−1)2−n) =:

2n
∑

m=1

Jn,m(f) .

We will use later for Jn,m(f) also the notation f(Btm−1)δnBtm , where
δnBt = Bt −Bt−2−n .

Remark. We have earlier defined the discrete stochastic integral for a pre-
visible process C and a martingale X

(

∫

C dX)n =

n
∑

m=1

Cm(Xm −Xm−1) .

If we want to take for C a function of X , then we have to take Cm =
f(Xm−1). This is the reason, why we have to take the differentials δnBtm
to ”stick out into future”.

The stochastic integral is a limit of discrete stochastic integrals:

Lemma 4.16.1. If f ∈ C1(R) such that f, f ′ are bounded on R, then Jn(f)
converges in L2 to a random variable

∫ 1

0

f(Bs) dB = lim
n→∞

Jn

satisfying

||
∫ 1

0

f(Bs) dB||22 = E[

∫ 1

0

f(Bs)
2 ds] .
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Proof. (i) For i 6= j we have E[Jn,i(f)Jn,j(f)] = 0.
Proof. For j > i, there is a factor Bj2−n −B(j−1)2−n of Jn,i(f)Jn,j(f) inde-
pendent of the rest of Jn,i(f)Jn,j(f) and the claim follows from E[Bj2−n −
B(j−1)2−n ] = 0.

(ii) E[Jn,m(f)2] = E[f(B(m−1)2−n)2]2−n.
Proof. f(B(m−1)/2n) is independent of (Bm2−n − B(m−1)2−n)2 which has
expectation 2−n.

(iii) From (ii) follows

||Jn(f)||2 =

2n
∑

m=1

E[f(B(m−1)2−n)2]2−n .

(iv) The claim: Jn converges in L2.
Since f ∈ C1, there exists C = ||f ′||2∞ and this gives |f(x) − f(y)|2 ≤
C · |x− y|2. We get

||Jn+1(f)− Jn(f)||22

=
2n−1
∑

m=1

E[(f(B(2m+1)2−(n+1))− f(B(2m)2−(n+1)))2]2−(n+1)

≤ C

2n−1
∑

m=1

E[(B(2m+1)2−(n+1) −B(2m)2−(n+1))2]2−(n+1)

= C · 2−n−2 ,

where the last equality followed from the fact that E[(B(2m+1)2−(n+1) −
B(2m)2−(n+1))2] = 2−n since B is Gaussian. We see that Jn is a Cauchy

sequence in L2 and has therefore a limit.

(v) The claim ||
∫ 1

0
f(Bs) dB||22 = E[

∫ 1

0
f(Bs)

2 ds].

Proof. Since
∑

m f(B(m−1)2−n)22−n converges point wise to
∫ 1

0 f(Bs)
2 ds,

(which exists because f and Bs are continuous), and is dominated by ||f ||2∞,
the claim follows since Jn converges in L2. �

We can extend the integral to functions f , which are locally L1 and bounded
near 0. We write Lploc(R) for functions f which are in Lp(I) when restricted
to any finite interval I on the real line.

Corollary 4.16.2.
∫ 1

0 f(Bs) dB exists as a L2 random variable for f ∈
L1
loc(R) ∩ L∞(−ǫ, ǫ) and any ǫ > 0.
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Proof. (i) If f ∈ L1
loc(R) ∩ L∞(−ǫ, ǫ) for some ǫ > 0, then

E[

∫ 1

0

f(Bs)
2 ds] =

∫ 1

0

∫

R

f(x)2√
2πs

e−x
2/2s dx ds <∞ .

(ii) If f ∈ L1
loc(R) ∩ L∞(−ǫ, ǫ), then for almost every B(ω), the limit

lim
a→∞

∫ 1

0

1[−a,a](Bs)f(Bs)
2 ds

exists point wise and is finite.
Proof. Bs is continuous for almost all ω so that 1[−a,a](Bs)f(B) is indepen-

dent of a for large a. The integral E[
∫ 1

0 1[−a,a](Bs)f(Bs)
2 ds] is bounded

by E[f(Bs)
2 ds] <∞ by (i).

(iii) The claim.
Proof. Assume f ∈ L1

loc(R)∩L∞(−ǫ, ǫ). Given fn ∈ C1(R) with 1[−a,a]fn →
f in L2(R).
By the dominated convergence theorem (2.4.3), we have

∫

1[ − a, a]fn(Bs) dB →
∫

1[ − a, a]f(Bs) dB

in L2. Since by (ii), the L2 bound is independent of a, we can also pass to
the limit a→ ∞. �

Definition. This integral is called an Ito integral. Having the one-dimensional
integral allows also to set up the integral in higher dimensions: with Brow-

nian motion in Rd and f ∈ L2
loc(R

d) define the integral
∫ 1

0 f(Bs) dBs
component wise.

Lemma 4.16.3. For n→ ∞,

2n
∑

j=1

Jn,j(1)
2 =

2n
∑

j=1

(Bj/2n −B(j−1)/2n)
2 → 1 .

Proof. By definition of Brownian motion, we know that for fixed n, Jn,j
are N(0, 2−n)-distributed random variables and so

E[

2n
∑

j=1

Jn,j(1)
2] = 2n ·Var[Bj/2n −B(j−1)/2n ] = 2n2−n = 1 .

Now, Xj = 2nJn,j are IID N(0, 1)-distributed random variables so that by
the law of large numbers

1

2n

2n
∑

j=1

Xj → 1

for n→ ∞. �
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The formal rules of integration do not hold for this integral. We have for
example in one dimension:

∫ 1

0

Bs dB =
1

2
(B2

1 − 1) 6= 1

2
(B2

1 −B2
0) .

Proof. Define

J−
n =

2n
∑

m=1

f(B(m−1)2−n)(Bm2−n −B(m−1)2−n) ,

J+
n =

2n
∑

m=1

f(Bm2−n)(Bm2−n −B(m−1)2−n) .

The above lemma implies that J+
n −J−

n → 1 almost everywhere for n→ ∞
and we check also J+

n + J−
n = B2

1 . Both of these identities come from
cancellations in the sum and imply together the claim. �

We mention now some trivial properties of the stochastic integral.

Theorem 4.16.4 (Properties of the Ito integral). Here are some basic prop-
erties of the Ito integral:
(1)

∫ t

0
f(Bs) + g(Bs) dBs =

∫ t

0
f(Bs) dBs +

∫ t

0
g(Bs) dBs.

(2)
∫ t

0
λ · f(Bs) dBs = λ ·

∫ t

0
f(Bs) dBs.

(3) t 7→
∫ t

0
f(Bs) dBs is a continuous map from R+ to L2.

(4) E[
∫ t

0
f(Bs) dBs] = 0.

(5)
∫ t

0
f(Bs) dBs is At measurable.

Proof. (1) and (2) follow from the definition of the integral.

For (3) define Xt =
∫ t

0 f(Bs) dB. Since

||Xt −Xt+ǫ||22 = E[

∫ t+ǫ

t

f(Bs)
2 ds]

=

∫ t+ǫ

t

∫

R

f(x)2√
2πs

e−x
2/2s dx ds → 0

for ǫ→ 0, the claim follows.
(4) and (5) can be seen by verifying it first for elementary functions f . �

It will be useful to consider an other generalizations of the integral.

Definition. If dW = dxdB is the Wiener measure on Rd ×C([0,∞), define

∫ t

0

f(Ws) dWs =

∫

Rd

∫ t

0

f(x+Bs) dBs dx .
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Definition. Assume f is also time dependent so that it is a function on

Rd×R. As long as E[
∫ 1

0
|f(Bs, s)|2 ds] <∞, we can also define the integral

∫ t

0

f(Bs, s) ds .

The following formula is useful for understanding and calculating stochas-
tic integrals. It is the ”fundamental theorem for stochastic integrals” and
allows to do ”change of variables” in stochastic calculus similarly as the
fundamental theorem of calculus does for usual calculus.

Theorem 4.16.5 (Ito’s formula). For a C2 function f(x) on Rd

f(Bt)− f(B0) =

∫ t

0

∇f(Bs) · dBs +
1

2

∫ t

0

∆f(Bs) ds .

If Bs would be an ordinary path in Rd with velocity vector dBs = Ḃs ds,
then we had

f(Bt)− f(B0) =

∫ t

0

∇f(Bs) · Ḃs ds

by the fundamental theorem of line integrals in calculus. It is a bit surprising
that in the stochastic setup, a second derivative ∆f appears in a first order
differential. One writes sometimes the formula also in the differential form

df = ∇f dB +
1

2
∆f dt .

Remark. We cite [107]: ”Ito’s formula is now the bread and butter of the
”quant” department of several major financial institutions. Models like that
of Black-Scholes constitute the basis on which a modern business makes de-
cisions about how everything from stocks and bonds to pork belly futures
should be priced. Ito’s formula provides the link between various stochastic
quantities and differential equations of which those quantities are the so-
lution.” For more information on the Black-Scholes model and the famous
Black-Scholes formula, see [15].

It is not much more work to prove a more general formula for functions
f(x, t), which can be time-dependent too:

Theorem 4.16.6 (Generalized Ito formula). Given a function f(x, t) on Rd×
[0, t] which is twice differentiable in x and differentiable in t. Then

f(Bt, t)−f(B0, 0) =

∫ t

0

∇f(Bs, s)· dBs+
1

2

∫ t

0

∆f(Bs, s) ds+

∫ t

0

ḟ(Bs, s) ds .
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In differential notation, this means

df = ∇f dB + (
1

2
∆f + ḟ) dt .

Proof. By a change of variables, we can assume t = 1. For each n, we
discretized time

{0 < 2−n < . . . , tk = k · 2−n, · · · , 1}

and define δnBtk = Btk −Btk−1
. We write

f(B1, 1) − f(B0, 0) =

2n
∑

k=1

(∇f)(Btk−1
, tk−1)δnBtk

+

2n
∑

k=1

f(Btk , tk−1)− f(Btk−1
, tk−1)− (∇f)(Btk−1

, tk−1)δnBtk

+
2n
∑

k=1

f(Btk , tk)− f(Btk , tk−1)

= In + IIn + IIIn .

(i) By definition of the Ito integral, the first sum In converges in L2 to
∫ 1

0 (∇f)(Bs, s) dBs.

(ii) If p > 2, we have
∑2n

k=1 |δnBtk |p → 0 for n→ ∞.
Proof. δnBtk is a N(0, 2−n)-distributed random variable so that

E[|δnBtk |p] = (2π)−1/22−(np)/2)

∫ ∞

−∞
|x|pe−x2/2 dx = C2−(np)/2 .

This means

E[

2n
∑

k=1

|δnBtk |p] = C2n2−(np)/2

which goes to zero for n→ ∞ and p > 2.

(iii)
∑2n

k=1 E[(Btk −Btk−1
)4] → 0 follows from (ii). We have therefore

2n
∑

k=1

E[g(Btk , tk)
2((Btk −Btk−1

)2 − 2−n)2] ≤ C

2n
∑

k=1

Var[(Btk −Btk−1
)2]

≤ C

2n
∑

k=1

E[(Btk −Btk−1
)4] → 0 .

(iv) Using a Taylor expansion

f(x) = f(y)−∇f(y)(x− y)− 1

2

∑

i,j

∂xixjf(y)(x− y)i(x− y)j +O(|x− y|3 ,
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we get for n→ ∞

IIn −
2n
∑

k=1

1

2

∑

i,j

∂xixjf(Btk−1
, tk−1)(δnBtk)i(δnBtk)j → 0

in L2. Since

2n
∑

k=1

1

2
∂xixjf(Btk−1

, tk−1)[(δnBtk)i(δnBtk)j − δij2
−n]

goes to zero in L2 (applying (ii) for g = ∂xixjf and note that (δnBtk)i and
(δnBtk)j are independent for i 6= j), we have therefore

IIn → 1

2

∫ t

0

∆f(Bs, s) ds

in L2.

(v) A Taylor expansion with respect to t

f(x, t)− f(x, s)− ḟ(x, s)(t− s) +O((t − s)2)

gives

IIIn →
∫ t

0

ḟ(Bs, s) ds

in L1 because s → f(Bs, s) is continuous and IIIn is a Riemann sum
approximation. �

Example. Consider the function

f(x, t) = eαx−α
2t/2 .

Because this function satisfies the heat equation ḟ + f ′′/2 = 0, we get from
Ito’s formula

f(Bt, t)− f(B0, t) = α

∫ t

0

f(Bs, s) · dBs .

We see that for functions satisfying the heat equation ḟ + f ′′/2 = 0 Ito’s
formula reduces to the usual rule of calculus. If we make a power expansion
in α of

∫ t

0

eαBs−α2s/2 dB =
1

α
eαBs−α2s/2 − 1

α
,

we get other formulas like

∫ t

0

Bs dB =
1

2
(B2

t − t) .
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Wick ordering.
There is a notation used in quantum field theory developed by Gian-Carlo
Wick at about the same time as Ito’s invented the integral. This Wick
ordering is a map on polynomials

∑n
i=1 aix

i which leave monomials (poly-
nomials of the form xn + an−1x

n−1 · · · ) invariant.

Definition. Let

Ωn(x) =
Hn(x)Ω0(x)√

2nn!

be the n′-th eigenfunction of the quantum mechanical oscillator. Define

: xn :=
1

2n/2
Hn(

x√
2
)

and extend the definition to all polynomials by linearity. The Polynomials
: xn : are orthogonal with respect to the measure Ω2

0dy = π−1/2e−y
2

dy
because we have seen that the eigenfunctions Ωn are orthonormal.

Example. Here are the first Wick powers:

: x : = x

: x2 : = x2 − 1

: x3 : = x3 − 3x

: x4 : = x4 − 6x2 + 3

: x5 : = x5 − 10x3 + 15x .

Definition. The multiplication operator Q : f 7→ xf is called the position
operator. By definition of the creation and annihilation operators one has
Q = 1√

2
(A+A∗).

The following formula indicates, why Wick ordering has its name and why
it is useful in quantum mechanics:

Proposition 4.16.7. As operators, we have the identity

: Qn :=
1

2n/2
: (A+A∗)n :=

1

2n/2

n
∑

j=0

(

n
j

)

(A∗)jAn−j .

Definition. Define L =
∑n
j=0

(

n
j

)

(A∗)jAn−j .
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Proof. Since we know that Ωn forms a basis in L2, we have only to verify
that : Qn : Ωk = 2−n/2LΩk for all k. From

2−1/2[Q,L] = [A+A∗,
n
∑

j=0

(

n
j

)

(A∗)jAn−j ]

=

n
∑

j=0

(

n
j

)

j(A∗)j−1An−j − (n− j)(A∗)jAn−j−1

= 0

we obtain by linearity [Hk(
√
2Q), L]. Because : Qn : Ω0 = 2−n/2(n!)1/2Ωn =

2−n/2(A∗)nΩ0 = 2−n/2LΩ0, we get

0 = (: Qn : −2−n/2L)Ω0

= (k!)−1/2Hk(
√
sQ)(: Qn : −2−n/2L)Ω0

= (: Qn : −2−n/2L)(k!)−1/2Hk(
√
sQ)Ω0

= (: Qn : −2−n/2L)Ωk .

�

Remark. The new ordering made the operators A,A∗ behaves as if A,B
would commutate. even so they don’t: they satisfy the commutation rela-
tions [A,A∗] = 1:

The fact that stochastic integration is relevant to quantum mechanics can
be seen from the following formula for the Ito integral:

Theorem 4.16.8 (Ito Integral of Bn). Wick ordering makes the Ito integral
behave like an ordinary integral.

∫ t

0

: Bns : dBs =
1

n+ 1
: Bn+1

t : .

Remark. Notation can be important to make a concept appear natural. An
other example, where an adaption of notation helps is quantum calculus,
”calculus without taking limits” [44], where the derivative is defined as
Dqf(x) = dqf(x)/dq(x) with dqf(x) = f(qx) − f(x). One can see that

Dqx
n = [n]xn−1, where [n] = qn−1

q−1 . The limit q → 1 corresponds to the
classical limit case ~ → 0 of quantum mechanics.

Proof. By rescaling, we can assume that t = 1.
We prove all these equalities simultaneously by showing

∫ 1

0

: eαBs : dB = α−1 : eαB1 : −α−1 .
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The generating function for the Hermite polynomials is known to be

∞
∑

n=0

Hn(x)
αn

n!
= eα

√
2x−α2

2 .

(We can check this formula by multiplying it with Ω0, replacing x with
x/

√
2 so that we have

∞
∑

n=0

Ωn(x)α
n

(n!)1/2
= eαx−

α2

2 − x2

2 .

If we apply A∗ on both sides, the equation goes onto itself and we get after
k such applications of A∗ that that the inner product with Ωk is the same
on both sides. Therefore the functions must be the same.)
This means

: eαx :=

∞
∑

j=0

αn : xn :

n!
= eαx−

1
2α

2

.

Since the right hand side satisfies ḟ + f ′′/2 = 2, the claim follows from the
Ito formula for such functions. �

We can now determine all the integrals
∫

Bns dB:

∫ t

0

1 dB = Bt

∫ t

0

Bs dB =
1

2
(B2

t − 1)

∫ t

0

B2
s dB =

∫ t

0

: B2
s : +1 dB = Bt +

1

3
(: Bt :

3) = Bt +
1

3
(B3

t − 3Bt)

and so on.

Stochastic integrals for the oscillator and the Brownian bridge process.
Let Qt = e−tBe2t/

√
2 the oscillator process and At = (1 − t)Bt/(1−t) the

Brownian bridge. If we define new discrete differentials

δnQtk = Qtk+1
− e−(tk+1−tk)Qtk

δnAtk = Atk+1
−Atk +

tk+1 − tk
(1 − t)

Atk

the stochastic integrals can be defined as in the case of Brownian motion
as a limit of discrete integrals.

Feynman-Kac formula for Schrödinger operators with magnetic fields.
Stochastic integrals appear in the Feynman-Kac formula for particles mov-
ing in a magnetic field. Let A(x) be a vector potential in R3 which gives
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the magnetic field B(x) = curl(A). Quantum mechanically, a particle mov-
ing in an magnetic field together with an external field is described by the
Hamiltonian

H = (i∇+A)2 + V .

In the case A = 0, we get the usual Schrödinger operator. The Feynman-
Kac formula is the Wiener integral

e−tHu(0) =

∫

e−F (B,t)u(Bt) dB ,

where F (B, t) is a stochastic integral.

F (B, t) = i

∫

a(Bs) dB +
i

2

∫ t

0

div(A) ds+

∫ t

0

V (Bs) ds .

4.17 Processes of bounded quadratic variation

We develop now the stochastic Ito integral with respect to general martin-
gales. Brownian motion B will be replaced by a martingale M which are
assumed to be in L2. The aim will be to define an integral

∫ t

0

Ks dMs ,

where K is a progressively measurable process which satisfies some bound-
edness condition.

Definition. Given a right-continuous function f : [0,∞) → R. For each
finite subdivision

∆ = {0 = t0, t1, . . . , t = tn}
of the interval [0, t] we define |∆| = supri=1 |ti+1 − ti| called the modulus of
∆. Define

||f ||∆ =

n−1
∑

i=0

|fti+1 − fti | .

A function with finite total variation ||f ||t = sup∆ ||f ||∆ < ∞ is called a
function of finite variation. If supt |f |t < ∞, then f is called of bounded
variation. One abbreviates, bounded variation with BV.

Example. Differentiable C1 functions are of finite variation. Note that for
functions of finite variations, Vt can go to ∞ for t → ∞ but if Vt stays
bounded, we have a function of bounded variation. Monotone and bounded
functions are of finite variation. Sums of functions of bounded variation are
of bounded variation.

Remark. Every function of finite variation can be written as f = f+− f−,
where f± are both positive and increasing. Proof: define f± = (±ft +
||f ||t)/2.
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Remark. Functions of bounded variation are in one to one correspondence
to Borel measures on [0,∞) by the Stieltjes integral

∫ t

0 |df | = f+
t + f−

t .

Definition. A process Xt is called increasing if the paths Xt(ω) are finite,
right-continuous and increasing for almost all ω ∈ Ω. A process Xt is called
of finite variation, if the paths Xt(ω) are finite, right-continuous and of
finite variation for almost all ω ∈ Ω.

Remark. Every bounded variation process A can be written as At = A+
t −

A−
t , where A

±
t are increasing. The process Vt =

∫ t

0
|dA|s = A+

t + A−
t is

increasing and we get for almost all ω ∈ Ω a measure called the variation
of A.

If Xt is a bounded At-adapted process and A is a process of bounded
variation, we can form the Lebesgue-Stieltjes integral

(X · A)t(ω) =
∫ t

0

Xs(ω) dAs(ω) .

We would like to define such an integral for martingales. The problem is:

Proposition 4.17.1. A continuous martingaleM is never of finite variation,
unless it is constant.

Proof. Assume M is of finite variation. We show that it is constant.

(i) We can assume without loss of generality that M is of bounded varia-
tion.
Proof. Otherwise, we can look at the martingale MSn , where Sn is the
stopping time Sn = inf{s | Vs ≥ n} and Vt is the variation of M on [0, t].

(ii) We can also assume also without loss of generality that M0 = 0.

(iii) Let ∆ = {t0 = 0, t1, . . . , tn = t} be a subdivision of [0, t]. Since M is a
martingale, we have by Pythagoras

E[M2
t ] = E[

k−1
∑

i=0

(M2
ti+1

−M2
ti)]

= E[

k−1
∑

i=1

(Mti+1 −Mti)(Mti+1 +Mti)]

= E[

k−1
∑

i=1

(Mti+1 −Mti)
2]
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and so

E[M2
t ] ≤ E[Vt(sup

i
|Mti+1 −Mti |] ≤ K · E[sup

i
|Mti+1 −Mti |] .

If the modulus |∆| goes to zero, then the right hand side goes to zero since
M is continuous. Therefore M = 0. �

Remark. This proposition applies especially for Brownian motion and un-
derlines the fact that the stochastic integral could not be defined point wise
by a Lebesgue-Stieltjes integral.

Definition. If ∆ = {t0 = 0 < t1 < . . . } is a subdivision of R+ = [0,∞) with
only finitely many points {t0, t1, . . . , tk } in each interval [0, t], we define
for a process X

T∆
t = T∆

t (X) = (

k−1
∑

i=0

(Xti+1 −Xti)
2) + (Xt −Xtk)

2 .

The processX is called of finite quadratic variation, if there exists a process
< X,X > such that for each t, the random variable T∆

t converges in
probability to < X,X >t as |∆| → 0.

Theorem 4.17.2 (Doob-Meyer decomposition). Given a continuous and
bounded martingale M of finite quadratic variation. Then < M,M > is
the unique continuous increasing adapted process vanishing at zero such
that M2− < M,M > is a martingale.

Remark. Before we enter the not so easy proof given in [85], let us mention
the corresponding result in the discrete case (see theorem (3.5.1), where
M2 was a submartingale so that M2 could be written uniquely as a sum
of a martingale and an increasing previsible process.

Proof. Uniqueness follows from the previous proposition: if there would be
two such continuous and increasing processes A,B, then A − B would be
a continuous martingale with bounded variation (if A and B are increas-
ing they are of bounded variation) which vanishes at zero. Therefore A = B.

(i) M2
t − T∆

t (M) is a continuous martingale.
Proof. For ti < s < ti+1, we have from the martingale property using that
(Mti+1 −Ms)

2 and (Ms −Mti)
2 are independent,

E[(Mti+1 −Mti)
2 | As] = E[(Mti+1 −Ms)

2|As] + (Ms −Mti)
2 .
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This implies with 0 = t0 < t1 < · · · < tl < s < tl+1 < · · · < tk < t and
using orthogonality

E[T∆
t (M)− T∆

s (M)|As] = E[

k
∑

j=l

(Mtj+1 −Mtj )
2|As]

+ E[(Mt −Mtk)
2|As] + E[(Ms −Mtl)

2|As]

= E[(Mt −Ms)
2|As] = E[M2

t −M2
s |As] .

This implies that M2
t − T∆

t (M) is a continuous martingale.

(ii) Let C be a constant such that |M | ≤ C in [0, a]. Then E[T∆
a ] ≤ 4C2,

independent of the subdivision ∆ = {t0, . . . , tn} of [0, a].
Proof. The previous computation in (i) gives for s = 0, using T∆

0 (M) = 0

E[T∆
t (M)|A0] = E[M2

t −M2
0 |A0] ≤ E[(Mt −M0)(Mt +M0)] ≤ 4C2 .

(iii) For any subdivision ∆, one has E[(T∆
a )2] ≤ 48C4.

Proof. We can assume tn = a. Then

(T∆
a (M))2 = (

n
∑

k=1

(Mtk −Mtk−1
)2)2

= 2

n
∑

k=1

(T∆
a − T∆

tk )(T
∆
tk − T∆

tk−1
) +

n
∑

k=1

(Mtk −Mtk−1
)4 .

From (i), we have

E[T∆
a − T∆

tk |Atk ] = E[(Ma −Mtk)
2 | Atk ]

and consequently, using (ii)

E[(T∆
a )2] = 2

n
∑

k=1

E[(Ma −Mtk)
2(T∆

tk − T∆
tk+1

)] +

n
∑

k=1

E[(Mtk −Mtk−1
)4]

≤ E[(2 sup
k

|Ma −Mtk |2 + sup
k

|Mtk −Mtk−1
|2)T∆

a ]

≤ 12C2E[T∆
a ] ≤ 48C4 .

(iii) For fixed a > 0 and subdivisions ∆n of [0, a] satisfying |∆n| → 0, the
sequence T∆n

a has a limit in L2.
Proof. Given two subdivisions ∆′,∆′′ of [0, a], let ∆ be the subdivision
obtained by taking the union of the points of ∆′ and ∆′′. By (i), the process
X = T∆′ −T∆′′

is a martingale and by (i) again, applied to the martingale
X instead of M we have, using (x+ y)2 ≤ 2(x2 + y2)

E[X2
a ] = E[(T∆′

a − T∆′′
a )2] = E[T∆

a (X)] ≤ 2(E[T∆
a (T∆′

)] + E[T∆
a (T∆′′

)]) .

We have therefore only to show that E[T∆
a (T∆′

)] → 0 for |∆′|+ |∆′′| → 0.
Let sk be in ∆ and tm the rightmost point in ∆′ such that tm ≤ sk <
sk+1 ≤ tm+1. We have

T∆′
sk+1

− T∆′
sk = (Msk+1

−Mtm)2 − (Msk −Mtm)2

= (Msk+1
−Msk)(Msk+1

+Msk − 2Mtm)
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and so
T∆
a (T∆′

) ≤ (sup
k

|Msk+1
+Msk − 2Mtm |2)T∆

a .

By the Cauchy Schwarz-inequality

E[T∆
a (T∆′

)] ≤ E[sup
k

|Msk+1
+Msk − 2Mtm |4]1/2E[(T∆

a )2]1/2

and the first factor goes to 0 as |∆| → 0 and the second factor is bounded
because of (iii).

(iv) There exists a sequence of ∆n ⊂ ∆n+1 such that T∆n
t (M) converges

uniformly to a limit 〈M,M〉 on [0, a].
Proof. Doob’s inequality applied to the discrete time martingale T∆n−T∆m

gives
E[sup
t≤a

|T∆n
t − T∆m

t |2] ≤ 4E[(T∆n
a − T∆m

a )2] .

Choose the sequence ∆n such that ∆n+1 is a refinement of ∆n and such
that

⋃

n∆n is dense in [0, a], we can achieve that the convergence is uni-
form. The limit 〈M,M〉 is therefore continuous.

(v) 〈M,M〉 is increasing.
Proof. Take ∆n ⊂ ∆n+1. For any pair s < t in

⋃

n∆n, we have T
∆n
s (M) ≤

T∆n
t (M) if n is so large that ∆n contains both s and t. Therefore 〈M,M〉

is increasing on
⋃

n∆n, which can be chosen to be dense. The continuity
of M implies that 〈M,M〉 is increasing everywhere. �

Remark. The assumption of boundedness for the martingales is not essen-
tial. It holds for general martingales and even more generally for so called
local martingales, stochastic processes X for which there exists a sequence
of bounded stopping times Tn increasing to ∞ for which XTn are martin-
gales.

Corollary 4.17.3. Let M,N be two continuous martingales with the same
filtration. There exists a unique continuous adapted process 〈M,N〉 of finite
variation which is vanishing at zero and such that

MN − 〈M,N〉

is a martingale.

Proof. Uniqueness follows again from the fact that a finite variation mar-
tingale must be zero. To get existence, use the parallelogram law

〈M,N〉 = 1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉) .
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This is vanishing at zero and of finite variation since it is a sum of two
processes with this property.
We know that M2 − 〈M,M〉, N2 − 〈N,N〉 and so that (M ±N)2 − 〈M ±
N,M ±N〉 are martingales. Therefore

(M +N)2 − 〈M +N,M +N〉 − (M −N)2 − 〈M −N,M −N〉
= 4MN − 〈M +N,M +N〉 − 〈M −N,M −N〉 .

and MN − 〈M,N〉 is a martingale. �

Definition. The process 〈M,N〉 is called the bracket of M and N and
〈M,M〉 the increasing process of M .

Example. IfB = (B(1), . . . , B(d)) is Brownian motion, then 〈< B(i), B(j)〉 =
δijt as we have computed in the proof of the Ito formula in the case t = 1.
It can be shown that every martingale M which has the property that

〈M (i),M (j)〉 = δij · t

must be Brownian motion. This is Lévy’s characterization of Brownian
motion.

Remark. If M is a martingale vanishing at zero and 〈M,M〉 = 0, then
M = 0. Since M2

t − 〈M,M〉t is a martingale vanishing at zero, we have
E[M2

t ] = E[〈M,M〉t].

Remark. Since we have got 〈M,M〉 as a limit of processes T∆
t , we could

also write 〈M,N〉 as such a limit.

4.18 The Ito integral for martingales

In the last section, we have defined for two continuous martingales M ,N ,
the bracket process 〈M,N〉. Because 〈M,M〉 was increasing, it was of fi-
nite variation and therefore also 〈M,N〉 is of finite variation. It defines a
random measure d〈M,N〉.

Theorem 4.18.1 (Kunita-Watanabe inequality). Let M,N be two continu-
ous martingales and H,K two measurable processes. Then for all p, q ≥ 1
satisfying 1/p+ 1/q = 1, we have for all t ≤ ∞

E[

∫ t

0

|Hs| |Ks| |d〈M,N〉s|] ≤ ||(
∫ t

0

H2
sd〈M,M〉)1/2||p

· ||(
∫ t

0

K2
sd〈N,N〉)1/2||q .
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Proof. (i) Define 〈M,N〉ts = 〈M,N〉t − 〈M,N〉s. Claim: almost surely

|〈M,N〉ts| ≤ (〈M,M〉ts)1/2(〈N,N〉ts)1/2 .

Proof. For fixed r, the random variable

〈M,M〉ts + 2r〈M,N〉ts + r2〈N,N〉ts = 〈M + rN,M + rN〉ts

is positive almost everywhere and this stays true simultaneously for a dense
set of r ∈ R. SinceM,N are continuous, it holds for all r. The claim follows,
since a+2rb+cr2 ≥ 0 for all r ≥ 0 with nonnegative a, c implies b ≤ √

a
√
c.

(ii) To prove the claim, it is, using Hölder’s inequality, enough to show
almost everywhere, the inequality

∫ t

0

|Hs| |Ks| d|〈M,N〉|s ≤ (

∫ t

0

H2
sd〈M,M〉)1/2 · (

∫ t

0

K2
sd〈N,N〉)1/2

holds. By taking limits, it is enough to prove this for t < ∞ and bounded
K,H . By a density argument, we can also assume the both K and H are
step functions H =

∑n
i=1Hi1Ji and K =

∑n
i=1Ki1Ji , where Ji = [ti, ti+1).

(iii) We get from (i) for step functions H,K as in (ii)

|
∫ t

0

HsKsd〈M,N〉s| ≤
∑

i

|HiKi||〈M,N〉ti+1

ti |

≤
∑

i

|HiKi|(〈M,M〉ti+1

ti )1/2(〈M,M〉ti+1

ti )1/2

≤ (
∑

i

H2
i 〈M,M〉ti+1

ti )1/2(
∑

i

K2
i 〈N,N〉ti+1

ti )1/2

= (

∫ t

0

H2
sd〈M,M〉)1/2 · (

∫ t

0

K2
sd〈N,N〉)1/2 ,

where we have used Cauchy-Schwarz inequality for the summation over
i. �

Definition. Denote by H2 the set of L2-martingales which are At-adapted
and satisfy

||M ||H2
= (sup

t
E[M2

t ])
1/2 <∞ .

Call H2 the subset of continuous martingales in H2 and with H2
0 the subset

of continuous martingales which are vanishing at zero.
Given a martingale M ∈ H2, we define L2(M) the space of progressively
measurable processes K such that

||K||2L2
(M)

= E[

∫ ∞

0

K2
sd〈M,M〉s] <∞ .

Both H2 and L2(M) are Hilbert spaces.
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Lemma 4.18.2. The space H2 of continuous L2 martingales is closed in H2

and so a Hilbert space. Also H2
0 is closed in H2 and is therefore a Hilbert

space.

Proof. Take a sequence M (n) in H2 converging to M ∈ H2. By Doob’s
inequality

E[(sup
t

|Mn
t −Mt|)2] ≤ 4||M (n) −M ||2H2 .

We can extract a subsequence, for which supt |M (nk)
t −Mt| converges point

wise to zero almost everywhere. Therefore M ∈ H2. The same argument
shows also that H2

0 is closed. �

Proposition 4.18.3. Given M ∈ H2 and K ∈ L2(M). There exists a unique

element
∫ t

0
KdM ∈ H2

0 such that

<

∫ t

0

KdM,N >=

∫ t

0

Kd〈M,N〉

for every N ∈ H2. The map K 7→
∫ t

0
KdM is an isometry form L2(M) to

H2
0 .

Proof. We can assume M ∈ H0 since in general, we define
∫ t

0 K dM =
∫ t

0 K d(M −M0).

(i) By the Kunita-Watanabe inequality, we have for every N ∈ H2
0

|E[
∫ t

0

Ksd〈M,N〉s]| ≤ ||N ||H2 · ||K||L2
(M)

.

The map

N 7→ E[(

∫ t

0

Ks) d〈M,N〉s]

is therefore a linear continuous functional on the Hilbert space H2
0 . By

Riesz representation theorem, there is an element
∫

K dM ∈ H2
0 such that

E[(

∫ t

0

Ks dMs)Nt] = E[

∫ t

0

Ksd〈M,N〉s]

for every N ∈ H2
0 .
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(ii) Uniqueness. Assume there exist two martingales L,L′ ∈ H2
0 such that

〈L,N〉 = 〈L′, N〉 for all N ∈ H2
0 . Then, in particular, 〈L−L′, L−L′〉 = 0,

from which L = L′ follows.

(iii) The integral K 7→
∫ t

0 K dM is an isometry because

||
∫ t

0

K dM ||2H0
= E[(

∫ ∞

0

Ks dMs)
2]

= E[

∫ ∞

0

K2
s d〈M,M〉]

= ||K||2L2
(M)

.

�

Definition. The martingale
∫ t

0 Ks dMs is called the Ito integral of the
progressively measurable process K with respect to the martingale M . We
can take especially,K = f(M), since continuous processes are progressively
measurable. If we take M = B, Brownian motion, we get the already
familiar Ito integral.

Definition. An At adapted right-continuous process is called a local martin-
gale if there exists a sequence Tn of increasing stopping times with Tn → ∞
almost everywhere, such that for every n, the process XTn1{Tn>0} is a uni-
formly integrable At-martingale. Local martingales are more general than
martingales. Stochastic integration can be defined more generally for local
martingales.

We show now that Ito’s formula holds also for general martingales. First,
a special case, the integration by parts formula.

Theorem 4.18.4 (Integration by parts). Let X,Y be two continuous mar-
tingales. Then

XtYt −X0Y0 =

∫ t

0

Xs dYs +

∫ t

0

YsdXs + 〈X,Y 〉t

and especially

X2
t −X2

0 = 2

∫ t

0

Xs dXs + 〈X,X〉t .

Proof. The general case follows from the special case by polarization: use
the special case for X ± Y as well as X and Y .
The special case is proved by discretisation: let ∆ = {t0, t1, . . . , tn} be a
finite discretisation of [0, t]. Then

n
∑

i=1

(Xti+1 −Xti)
2 = X2

t −X2
0 − 2

n
∑

i=1

Xti(Xti+1 −Xti) .
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Letting |∆| going to zero, we get the claim. �

Theorem 4.18.5 (Ito formula for martingales). Given vector martingales
M = (M (1), . . . ,M (d)) and X and a function f ∈ C2(Rd,R). Then

f(Xt)−f(X0) =

∫ t

0

∇f(X) dMt+
1

2

∑

ij

∫ t

0

δxiδxjfxixj (Xs) d〈M (i)
t ,M

(j)
t 〉 .

Proof. It is enough to prove the formula for polynomials. By the integration
by parts formula, we get the result for functions f(x) = xig(x), if it is
established for a function g. Since it is true for constant functions, we are
done by induction. �

Remark. The usual Ito formula in one dimensions is a special case

f(Xt)− f(X0) =

∫ t

0

f ′(Xs) dBs +
1

2

∫ t

0

f ′′(Xs) ds .

In one dimension and if Mt = Bt is Brownian motion and Xt is a martin-
gale, we have We will use it later, when dealing with stochastic differential
equations. It is a special case, because 〈Bt, Bt〉 = t, so that d〈Bt, Bt〉 = dt.

Example. If f(x) = x2, this formula gives for processes satisfying X0 = 0

X2
t /2 =

∫ t

0

Xs dBs +
1

2
t .

This formula integrates the stochastic integral
∫ t

0
Xs dBs = X2

t /2− t/2.

Example. If f(x) = log(x), the formula gives

log(Xt/X0) =

∫ t

0

dBs/Xs −
1

2

∫ t

0

ds/X2
s .

4.19 Stochastic differential equations

We have seen earlier that if Bt is Brownian motion, then X = f(B, t) =

eαBt−α2t/2 is a martingale. In the last section we learned using Ito’s formula
and and 1

2∆f + ḟ = 0 that

∫ t

0

αXs dMs = Xt − 1 .

We can write this in differential form as

dXt = αXt dMt, X0 = 1 .
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This is an example of a stochastic differential equation (SDE) and one
would use the notation

dX

dM
= αX

if it would not lead to confusion with the corresponding ordinary differential
equation, whereM is not a stochastic process but a variable and where the
solution would be X = eαB. Here, the solution is the stochastic process
Xt = eαBt−α2t/2.

Definition. Let Bt be Brownian motion in Rd. A solution of a stochastic
differential equation

dXt = f(Xt, Bt) · dBt + g(Xt) dt ,

is a Rd-valued process Xt satisfying

Xt =

∫ t

0

f(Xs, Bs) · dBs +
∫ t

0

g(Xs) ds ,

where f : Rd × Rd → Rd and g : Rd × R+ → Rd.

As for ordinary differential equations, where one can easily solve separable
differential equations dx/dt = f(x) + g(t) by integration, this works for
stochastic differential equations. However, to integrate, one has to use an
adapted substitution. The key is Ito’s formula (4.18.5) which holds for
martingales and so for solutions of stochastic differential equations which
is in one dimensions

f(Xt)− f(X0) =

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs) d〈Xs, Xs〉 .

The following ”multiplication table” for the product 〈·, ·〉 and the differen-
tials dt, dBt can be found in many books of stochastic differential equations
[2, 46, 67] and is useful to have in mind when solving actual stochastic dif-
ferential equations:

dt dBt

dt 0 0
dBt 0 t

Example. The linear ordinary differential equation dX/dt = rX with solu-
tion Xt = ertX0 has a stochastic analog. It is called the stochastic popula-
tion model. We look for a stochastic process Xt which solves the SDE

dXt

dt
= rXt + αXtζt .

Separation of variables gives

dX

X
= rtdt + αζdt
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and integration with respect to t

∫ t

0

dXt

Xt
= rt+ αBt .

In order to compute the stochastic integral on the left hand side, we have to
do a change of variables with f(X) = log(x). Looking up the multiplication
table:

〈dXt, dXt〉 = 〈rXtdt+ αXtdBt, rXtdt+ α2XtdBt〉 = α2X2
t dt .

Ito’s formula in one dimensions

f(Xt)− f(X0) =

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs)〈Xs, Xs〉

gives therefore

log(Xt/X0) =

∫ t

0

dXs/Xs −
1

2

∫ t

0

α2ds

so that
∫ t

0 dXs/Xs = α2t/2 + log(Xt/X0). Therefore,

α2t/2 + log(Xt/X0) = rt+ αBt

and so Xt = X0e
rt−α2t/2+αBt . This process is called geometric Brownian

motion. We see especially that Ẋ = X/2 +Xξ has the solution Xt = eBt .

Figure. Solutions to the stochastic
population model for r > 0.

Figure. Solutions to the stochastic
population model for r < 0.

Remark. The stochastic population model is also important when modeling
financial markets. In that area the constant r is called the percentage drift
or expected gain and α is called the percentage volatility. The Black-Scholes
model makes the assumption that the stock prices evolves according to
geometric Brownian motion.
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Example. In principle, one can study stochastic versions of any differential
equation. An example from physics is when a particle move in a possibly
time-dependent force field F (x, t) with friction b for which the equation
without noise is

ẍ = −bẋ+ F (x, t) .

If we add white noise, we get a stochastic differential equation

ẍ = −bẋ+ F (x, t) + αζ(t) .

For example, with X = ẋ and F = 0, the function v(t) satisfies the stochas-
tic differential equation

dXt

dt
= −bXt + αζt ,

which has the solution
Xt = e−bt + αBt .

With a time dependent force F (x, t), already the differential equation with-
out noise can not be given closed solutions in general. If the friction constant
b is noisy, we obtain

dXt

dt
= (−b+ αζt)Xt

which is the stochastic population model treated in the previous example.

Example. Here is a list of stochastic differential equations with solutions.
We again use the notation of white noise ζ(t) = dB

dt which is a generalized
function in the following table. The notational replacement dBt = ζtdt is
quite popular for more applied sciences like engineering or finance.

Stochastic differential equation Solution
d
dtXt = 1ζ(t) Xt = Bt
d
dtXt = Btζ(t) Xt =: B2

t : /2 = (B2
t − 1)/2

d
dtXt = B2

t ζ(t) Xt =: B3
t : /3 = (B3

t − 3Bt)/3
d
dtXt = B3

t ζ(t) Xt =: B4
t : /4 = (B4

t − 6B2
t + 3)/4

d
dtXt = B4

t ζ(t) Xt =: B5
t : /5 = (B5

t − 10B3
t + 15Bt)/5

d
dtXt = αXtζ(t) Xt = eαBt−α2t/2

d
dtXt = rXt + αXtζ(t) Xt = ert+αBt−α2t/2

Remark. Because the Ito integral can be defined for any continuous martin-
gale, Brownian motion could be replaced by an other continuous martingale
M leading to other classes of stochastic differential equations. A solution
must then satisfy

Xt =

∫ t

0

f(Xs,Ms, s) · dMs +

∫ t

0

g(Xs, s) ds .

Example.

Xt = eαMt−α2〈X,X〉t/2

is a solution of dXt = αMtdMt,M0 = 1.
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Remark. Stochastic differential equations were introduced by Ito in 1951.
Differential equations with a different integral came from Stratonovich but
there are formulas which relating them with each other. So, it is enough
to consider the Ito integral. Both versions of stochastic integration have
advantages and disadvantages. Kunita shows in his book [55] that one can
view solutions as stochastic flows of diffeomorphisms. This brings the topic
into the framework of ergodic theory.

For ordinary differential equations ẋ = f(x, t), one knows that unique solu-
tions exist locally if f is Lipshitz continuous in x and continuous in t. The
proof given for 1-dimensional systems generalizes to differential equations
in arbitrary Banach spaces. The idea of the proof is a Picard iteration of
an operator which is a contraction. Below, we give a detailed proof of this
existence theorem for ordinary differential equations. For stochastic differ-
ential equations, one can do the same. We will do such an iteration on the
Hilbert space H2

[0,t] of L2 martingales X having finite norm

||X ||T = E[sup
t≤T

X2
t ] .

We will need the following version of Doob’s inequality:

Lemma 4.19.1. Let X be a Lp martingale with p ≥ 1. Then

E[sup
s≤t

|Xs|p] ≤ (
p

p− 1
)p · E[|Xt|p] .

Proof. We can assume without loss of generality that X is bounded. The
general result follows by approximating X by X ∧ k with k → ∞.
Define X∗ = sups≤t |Xs|p. From Doob’s inequality

P[X ≥ λ] ≤ E[|Xt| · 1X∗≥λ]

we get

E[|X∗|p] = E[

∫ X∗

0

pλp−1 dλ]

= E[

∫ ∞

0

pλp−11{X∗≥λ} dλ]

= E[

∫ ∞

0

pλp−1P[X∗ ≥ λ] dλ]

≤ E[

∫ ∞

0

pλp−1E[|Xt| · 1X∗≥λ] dλ]

= pE[|Xt|
∫ X∗

0

λp−2 dλ

=
p

p− 1
E[|Xt| · (X∗)p−1] .
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Hölder’s inequality gives

E[|X∗|p] ≤ p

p− 1
E[(X∗)p](p−1)/pE[|Xt|p]1/p

and the claim follows. �

Theorem 4.19.2 (Local existence and uniqueness of solutions). Let M be a
continuous martingale. Assume f(x, t) and g(x, t) are continuous in t and
Lipshitz continuous in x. Then there exists T > 0 and a unique solution
Xt of the SDE

dX = f(x, t) dM + g(x, t) ds

with initial condition X0 = X0.

Proof. Define the operator

S(X) =

∫ t

0

f(s,Xs) dMs +

∫ t

0

g(s,Xs) ds

on L2-processes. Write S(X) = S1(X)+S2(X). We will show that on some
time interval (0, T ], the map S is a contraction and that Sn(X) converges
in the metric |||X − Y |||T = E[sups≤T (Xs − Ys)

2], if T is small enough to
a unique fixed point. It is enough that for i = 1, 2

|||Si(X)− Si(Y )|||T ≤ (1/4) · ||X − Y ||T

then S is a contraction

|||S(X)− S(Y )|||T ≤ (1/2) · ||X − Y ||T .

By assumption, there exists a constant K, such that

|f(t, w)− f(t, w′)| ≤ K · sup
s≤1

|w − w′| .

(i) |||S1(X)−S1(Y )|||T = |||
∫ t

0 f(s,Xs)− f(s, Ys) dMs|||T ≤ (1/4) · |||X −
Y |||T for T small enough.
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Proof. By the above lemma for p = 2, we have

|||S1(X)− S1(Y )|||T = E[sup
t≤T

(

∫ t

0

f(s,X)− f(s, Y ) dMs)
2]

≤ 4E[(

∫ T

0

f(t,X)− f(t, Y ) dMt)
2]

= 4E[(

∫ T

0

f(t,X)− f(t, Y ))2 d〈M,M〉t]

≤ 4K2E[

∫ T

0

sup
s≤t

|Xs − Ys|2 dt]

= 4K2

∫ T

0

|||X − Y |||s ds

≤ (1/4) · |||X − Y |||T ,
where the last inequality holds for T small enough.

(ii) |||S2(X) − S2(Y )|||T = |||
∫ t

0
g(s,Xs) − g(s, Ys) ds|||T ≤ (1/4) · |||X −

Y |||T for T small enough. This is proved for differential equations in Banach
spaces.
The two estimates (i) and (ii) prove the claim in the same way as in the
classical Cauchy-Picard existence theorem. �

Appendix. In this Appendix, we add the existence of solutions of ordinary
differential equations in Banach spaces. Let X be a Banach space and I an
interval in R. The following lemma is useful for proving existence of fixed
points of maps.

Lemma 4.19.3. Let X = Br(x0) ⊂ X and assume φ is a differentiable map
X → X . If for all x ∈ X , ||Dφ(x)|| ≤ |λ| < 1 and

||φ(x0)− x0|| ≤ (1− λ) · r

then φ has exactly one fixed point in X .

Proof. The condition ||x− x0|| < r implies that

||φ(x) − x0|| ≤ ||φ(x) − φ(x0)||+ ||φ(x0)− x0|| ≤ λr + (1− λ)r = r .

The map φ maps therefore the ball X into itself. Banach’s fixed point
theorem applied to the complete metric space X and the contraction φ
implies the result. �

Let f be a map from I × X to X . A differentiable map u : J → X of an
open ball J ⊂ I in X is called a solution of the differential equation

ẋ = f(t, x)
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if we have for all t ∈ J the relation

u̇(t) = f(t, u(t)) .

Theorem 4.19.4 (Cauchy-Picard Existence theorem). Let f : I × X → X
be continuous in the first coordinate and locally Lipshitz continuous in the
second. Then, for every (t0, x0) ∈ I×X , there exists an open interval J ⊂ I
with midpoint t0, such that on J , there exists exactly one solution of the
differential equation ẋ = f(t, x).

Proof. There exists an interval J(t0, a) = (t0 − a, t0 + a) ⊂ I and a ball
B(x0, b), such that

M = sup{||f(t, x)|| | (t, x) ∈ J(t0, a)×B(x0, b)}

as well as

k = sup{ ||f(t, x1)− f(t, x2)||
||x1 − x2||

| (t, x1), (t, x2) ∈ J(t0, a)×B(x0, b), x1 6= x2}

are finite. Define for r < a the Banach space

X r = C(J(t0, r),X ) = {y : J(t0, r) → X , y continuous}

with norm
||y|| = sup

t∈J(t0,r)
||y(t)||

Let Vr,b be the open ball in X r with radius b around the constant map
t 7→ x0. For every y ∈ Vr,b we define

φ(y) : t 7→ x0 +

∫ t

t0

f(s, y(s))ds

which is again an element in X r. We prove now, that for r small enough,
φ is a contraction. A fixed point of φ is then a solution of the differential
equation ẋ = f(t, x), which exists on J = Jr(t0). For two points y1, y2 ∈ Vr,
we have by assumption

||f(s, y1(s)) − f(s, y2(s))|| ≤ k · ||y1(s)− y2(s)|| ≤ k · ||y1 − y2||

for every s ∈ Jr. Thus, we have

||φ(y1)− φ(y2)|| = ||
∫ t

t0

f(s, y1(s)) − f(s, y2(s)) ds||

≤
∫ t

t0

||f(s, y1(s))− f(s, y2(s))|| ds

≤ kr · ||y1 − y2|| .
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On the other hand, we have for every s ∈ Jr

||f(s, y(s))|| ≤M

and so

||φ(x0)− x0|| = ||
∫ t

t0

f(s, x0(s)) ds|| ≤
∫ t

t0

||f(s, x0(s))|| ds ≤M · r .

We can apply the above lemma, if kr < 1 and Mr < b(1 − kr). This is
the case, if r < b/(M + kb). By choosing r small enough, we can get the
contraction rate as small as we wish. �

Definition. A set X with a distance function d(x, y) for which the following
properties
(i) d(y, x) = d(x, y) ≥ 0 for all x, y ∈ X .
(ii) d(x, x) = 0 and d(x, y) > 0 for x 6= y.
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z. hold is called a metric space.

Example. The plane R2 with the usual distance d(x, y) = |x− y|. An other
metric is the Manhattan or taxi metric d(x, y) = |x1 − y1|+ |x2 − y2|.

Example. The set C([0, 1]) of all continuous functions x(t) on the interval
[0, 1] with the distance d(x, y) = maxt |x(t) − y(t)| is a metric space.

Definition. A map φ : X → X is called a contraction, if there exists λ < 1
such that d(φ(x), φ(y)) ≤ λ ·d(x, y) for all x, y ∈ X . The map φ shrinks the
distance of any two points by the contraction factor λ.

Example. The map φ(x) = 1
2x+ (1, 0) is a contraction on R2.

Example. The map φ(x)(t) = sin(t)x(t) + t is a contraction on C([0, 1])
because |φ(x)(t) − φ(y)(t)| = | sin(t)| · |x(t) − y(t)| ≤ sin(1) · |x(t)− y(t)|.

Definition. A Cauchy sequence in a metric space (X, d) is defined to be a
sequence which has the property that for any ǫ > 0, there exists n0 such
that |xn − xm| ≤ ǫ for n ≥ n0,m ≥ n0.
A metric space in which every Cauchy sequence converges to a limit is
called complete.

Example. The n-dimensional Euclidean space

(Rn, d(x, y) = |x− y| =
√

x21 + · · ·+ x2n)

is complete. The set of rational numbers with the usual distance

(Q, d(x, y) = |x− y|)

is not complete.
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Example. The space C[0, 1] is complete: given a Cauchy sequence xn, then
xn(t) is a Cauchy sequence in R for all t. Therefore xn(t) converges point
wise to a function x(t). This function is continuous: take ǫ > 0, then |x(t)−
x(s)| ≤ |x(t) − xn(t)| + |xn(t) − yn(s)| + |yn(s) − y(s)| by the triangle
inequality. If s is close to t, the second term is smaller than ǫ/3. For large
n, |x(t) − xn(t)| ≤ ǫ/3 and |yn(s) − y(s)| ≤ ǫ/3. So, |x(t) − x(s)| ≤ ǫ if
|t− s| is small.

Theorem 4.19.5 (Banachs fixed point theorem). A contraction φ in a com-
plete metric space (X, d) has exactly one fixed point in X .

Proof. (i) We first show by induction that

d(φn(x), φn(y)) ≤ λn · d(x, y)

for all n.

(ii) Using the triangle inequality and
∑

k λ
k = (1 − λ)−1, we get for all

x ∈ X ,

d(x, φnx) ≤
n−1
∑

k=0

d(φkx, φk+1x) ≤
n−1
∑

k=0

λkd(x, φ(x)) ≤ 1

1− λ
· d(x, φ(x)) .

(iii) For all x ∈ X the sequence xn = φn(x) is a Cauchy sequence because
by (i),(ii),

d(xn, xn+k) ≤ λn · d(x, xk) ≤ λn · 1

1− λ
· d(x, x1) .

By completeness of X it has a limit x̃ which is a fixed point of φ.

(iv) There is only one fixed point. Assume, there were two fixed points x̃, ỹ
of φ. Then

d(x̃, ỹ) = d(φ(x̃), φ(ỹ)) ≤ λ · d(x̃, ỹ) .
This is impossible unless x̃ = ỹ. �
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Chapter 5

Selected Topics

5.1 Percolation

Definition. Let ei be the standard basis in the lattice Zd. Denote with Ld

the Cayley graph of Zd with the generators A = {e1, . . . , ed }. This graph
Ld = (V,E) has the lattice Zd as vertices. The edges or bonds in that
graph are straight line segments connecting neighboring points x, y. Points
satisfying |x− y| = ∑d

i=1 |xi − yi| = 1.

Definition. We declare each bond of Ld to be open with probability p ∈
[0, 1] and closed otherwise. Bonds are open ore closed independently of all
other bonds. The product measure Pp is defined on the probability space
Ω =

∏

e∈E{0, 1} of all configurations. We denote expectation with respect
to Pp with Ep[·].

Definition. A path in Ld is a sequence of vertices (x0, x1, . . . , xn) such that
(xi, xi+1) = ei are bonds of Ld. Such a path has length n and connects x0
with xn. A path is called open if all its edges are open and closed if all its
edges are closed. Two subgraphs of Ld are disjoint if they have no edges
and no vertices in common.

Definition. Consider the random subgraph of Ld containing the vertex set
Zd and only open edges. The connected components of this graph are called
open clusters. If it is finite, an open cluster is also called a lattice animal.
Call C(x) the open cluster containing the vertex x. By translation invari-
ance, the distribution of C(x) is independent of x and we can take x = 0
for which we write C(0) = C.

283
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Figure. A lattice animal.

Definition. Define the percolation probability θ(p) being the probability
that a given vertex belongs to an infinite open cluster.

θ(p) = P[|C| = ∞] = 1−
∞
∑

n=1

P[|C| = n] .

One of the goals of bond percolation theory is to study the function θ(p).

Lemma 5.1.1. There exists a critical value pc = pc(d) such that θ(p) = 0
for p < pc and θ(p) > 0 for p > pc. The value d 7→ pc(d) is non-increasing
with respect to the dimension pc(d+ 1) ≤ pc(d).

Proof. The function p 7→ θ(p) is non-decreasing and θ(0) = 0, θ(1) = 1. We
can therefore define

pc = inf{p ∈ [0, 1] | θ(p) > 0 }.
The graph Zd can be embedded into the graph Zd

′
for d < d′ by realizing Zd

as a linear subspace of Zd
′
parallel to a coordinate plane. Any configuration

in Ld
′
projects then to a configuration in Ld. If the origin is in an infinite

cluster of Zd, then it is also in an infinite cluster of Zd
′
. �

Remark. The one-dimensional case d = 1 is not interesting because pc = 1
there. Interesting phenomena are only possible in dimensions d > 1. The
planar case d = 2 is already very interesting.

Definition. A self-avoiding random walk in Ld is the process ST obtained
by stopping the ordinary random walk Sn with stopping time

T (ω) = inf{n ∈ N | ω(n) = ω(m),m < n} .
Let σ(n) be the number of self-avoiding paths in Ld which have length n.
The connective constant of Ld is defined as

λ(d) = lim
n→∞

σ(n)1/n .
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Remark. The exact value of λ(d) is not known. But one has the elementary
estimate d < λ(d) < 2d − 1 because a self-avoiding walk can not reverse
direction and so σ(n) ≤ 2d(2d − 1)n−1 and a walk going only forward
in each direction is self-avoiding. For example, it is known that λ(2) ∈
[2.62002, 2.69576] and numerical estimates makes one believe that the real
value is 2.6381585. The number cn of self-avoiding walks of length n in L2 is
for small values c1 = 4, c2 = 12, c3 = 36, c4 = 100, c5 = 284, c6 = 780, c7 =
2172, . . . . Consult [63] for more information on the self-avoiding random
walk.

Theorem 5.1.2 (Broadbent-Hammersley theorem). If d > 1, then

0 < λ(d)−1 ≤ pc(d) ≤ pc(2) < 1 .

Proof. (i) pc(d) ≥ λ(d)−1.
Let N(n) ≤ σ(n) be the number of open self-avoiding paths of length n in
Ln. Since any such path is open with probability pn, we have

Ep[N(n)] = pnσ(n) .

If the origin is in an infinite open cluster, there must exist open paths of
all lengths beginning at the origin so that

θ(p) ≤ Pp[N(n) ≥ 1] ≤ Ep[N(n)] = pnσ(n) = (pλ(d) + o(1))n

which goes to zero for p < λ(p)−1. This shows that pc(d) ≥ λ(d)−1.

(ii) pc(2) < 1.
Denote by L2

∗ the dual graph of L2 which has as vertices the faces of L2 and
as vertices pairs of faces which are adjacent. We can realize the vertices as
Z2 + (1/2, 1/2). Since there is a bijective relation between the edges of L2

and L2
∗ and we declare an edge of L2

∗ to be open if it crosses an open edge
in L2 and closed, if it crosses a closed edge. This defines bond percolation
on L2

∗.

The fact that the origin is in the interior of a closed circuit of the dual
lattice if and only if the open cluster at the origin is finite follows from the
Jordan curve theorem which assures that a closed path in the plane divides
the plane into two disjoint subsets.

Let ρ(n) denote the number of closed circuits in the dual which have length
n and which contain in their interiors the origin of L2. Each such circuit
contains a self-avoiding walk of length n− 1 starting from a vertex of the
form (k + 1/2, 1/2), where 0 ≤ k < n. Since the number of such paths γ is
at most nσ(n− 1), we have

ρ(n) ≤ nσ(n− 1)
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and with q = 1− p

∑

γ

P[γ is closed] ≤
∞
∑

n=1

qnnσ(n− 1) =

∞
∑

n=1

qn(qλ(2) + o(1))n−1

which is finite if qλ(2) < 1. Furthermore, this sum goes to zero if q → 0 so
that we can find 0 < δ < 1 such that for p > δ

∑

γ

P[γ is closed] ≤ 1/2.

We have therefore

P[|C| = ∞] = P[no γ is closed] ≥ 1−
∑

γ

P[γ is closed] ≥ 1/2

so that pc(2) ≤ δ < 1. �

Remark. We will see below that even pc(2) < 1 − λ(2)−1. It is however
known that pc(2) = 1/2.

Definition. The parameter set p < pc is called the sub-critical phase, the
set p > pc is the supercritical phase.

Definition. For p < pc, one is also interested in the mean size of the open
cluster

χ(p) = Ep[|C|] .
For p > pc, one would like to know the mean size of the finite clusters

χf (p) = Ep[|C| | |C| <∞] .

It is known that χ(p) <∞ for p < pc but only conjectured that χf (p) <∞
for p > pc.
An interesting question is whether there exists an open cluster at the critical
point p = pc. The answer is known to be no in the case d = 2 and generally
believed to be no for d ≥ 3. For p near pc it is believed that the percolation
probability θ(p) and the mean size χ(p) behave as powers of |p− pc|. It is
conjectured that the following critical exponents

γ = − lim
pրpc

logχ(p)

log |p− pc|

β = lim
pցpc

log θ(p)

log |p− pc|

δ−1 = − lim
n→∞

log Ppc [|C| ≥ n

logn
] .

exist.

Percolation deals with a family of probability spaces (Ω,A,Pp), where

Ω = {0, 1}Ld

is the set of configurations with product σ-algebra A and

product measure Pp = (p, 1− p)L
d

.
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Definition. There exists a natural partial ordering in Ω coming from the
ordering on {0, 1}: we say ω ≤ ω′, if ω(e) ≤ ω′(e) for all bonds e ∈ L2.
We call a random variable X on (Ω,A,P) increasing if ω ≤ ω′ implies
X(ω) ≤ X(ω′). It is called decreasing if −X is increasing. As usual, this
notion can also be defined for measurable sets A ∈ A: a set A is increasing
if 1A is increasing.

Lemma 5.1.3. If X is a increasing random variable in L1(Ω, Pq)∩L1(Ω,Pp),
then

Ep[X ] ≤ Eq[X ]

if p ≤ q.

Proof. If X depends only on a single bond e, we can write Ep[X ] = pX(1)+
(1 − p)X(0). Because X is assumed to be increasing, we have d

dpEp[X ] =

X(1)−X(0) ≥ 0 which gives Ep[X ] ≤ Eq[X ] for p ≤ q. If X depends only

on finitely many bonds, we can write it as a sum X =
∑d

i=1Xi of variables
Xi which depend only on one bond and get again

d

dp
Ep[X ] =

n
∑

i=1

(Xi(1)−Xi(0)) ≥ 0 .

In general we approximate every random variable in L1(Ω,Pp)∩L1(Ω, Pq)
by step functions which depend only on finitely many coordinatesXi. Since
Ep[Xi] → Ep[X ] and Eq[Xi] → Eq[X ], the claim follows. �

The following correlation inequality is named after Fortuin, Kasterleyn and
Ginibre (1971).

Theorem 5.1.4 (FKG inequality). For increasing random variables X,Y ∈
L2(Ω,Pp), we have

Ep[XY ] ≥ Ep[X ] · Ep[Y ] .

Proof. As in the proof of the above lemma, we prove the claim first for ran-
dom variables X which depend only on n edges e1, e2, . . . , en and proceed
by induction.

(i) The claim, if X and Y only depend on one edge e.
We have

(X(ω)−X(ω′)(Y (ω)− Y (ω′)) ≥ 0
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since the left hand side is 0 if ω(e) = ω′(e) and if 1 = ω(e) = ω′(e) = 0, both
factors are nonnegative since X,Y are increasing, if 0 = ω(e) = ω′(e) = 1
both factors are non-positive since X,Y are increasing. Therefore

0 ≤
∑

σ,σ′∈{0,1}
(X(ω)−X(ω′))(Y (ω)− Y (ω′))Pp[ω(e) = σ]Pp[ω(e) = σ′]

= 2(Ep[XY ]− Ep[X ]Ep[Y ]) .

(ii) Assume the claim is known for all functions which depend on k edges
with k < n. We claim that it holds also for X,Y depending on n edges
e1, e2, . . . , en.
Let Ak = A(e1, . . . ek) be the σ-algebra generated by functions depending
only on the edges ek. The random variables

Xk = Ep[X |Ak], Yk = Ep[Y |Ak]

depend only on the e1, . . . , ek and are increasing. By induction,

Ep[Xn−1Yn−1] ≥ Ep[Xn−1]Ep[Yn−1] .

By the tower property of conditional expectation, the right hand side is
Ep[X ]Ep[Y ]. For fixed e1, . . . , en−1, we have (XY )n−1 ≥ Xn−1Yn−1 and so

Ep[XY ] = Ep[(XY )n−1] ≥ Ep[Xn−1Yn−1] .

(iii) Let X,Y be arbitrary and define Xn = Ep[X |An], Yn = Ep[Y |An]. We
know from (ii) that Ep[XnYn] ≥ Ep[Xn]Ep[Yn]. Since Xn = E[X |An] and
Yn = E[X |An] are martingales which are bounded in L2(Ω,Pp), Doob’s
convergence theorem (3.5.4) implies that Xn → X and Yn → Y in L2 and
therefore E[Xn] → E[X ] and E[Yn] → E[Y ]. By the Schwarz inequality, we
get also in L1 or the L2 norm in (Ω,A,Pp)

||XnYn −XY ||1 ≤ ||(Xn −X)Yn||1 + ||X(Yn − Y )||1
≤ ||Xn −X ||2||Yn||2 + ||X ||2||Yn − Y ||2
≤ C(||Xn −X ||2 + ||Yn − Y ||2) → 0

where C = max(||X ||2, ||Y ||2) is a constant. This means Ep[XnYn] →
Ep[XY ]. �

Remark. It follows immediately that if A,B are increasing events in Ω,
then Pp[A ∩B] ≥ Pp[A] · Pp[B].

Example. Let Γi be families of paths in Ld∗ and let Ai be the event that
some path in Γi is open. Then Ai are increasing events and so after applying
the inequality k times, we get

Pp[

k
⋂

i=1

Ai] ≥
k
∏

i=1

Pp[Ai] .
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We show now, how this inequality can be used to give an explicit bound for
the critical percolation probability pc in L2. The following corollary belongs
still to the theorem of Broadbent-Hammersley.

Corollary 5.1.5.
pc(2) ≤ (1− λ(2)−1) .

Proof. Given any integer N ∈ N, define the events

FN = {∃ no closed path of length ≤ N in Ld
∗}

GN = {∃ no closed path of length > N in Ld
∗} .

We know that FN ∩GN ⊂ {|C| = ∞}. Since FN and GN are both increas-
ing, the correlation inequality says Pp[FN ∩ GN ] ≥ Pp[FN ] · Pp[GN ]. We
deduce

θ(p) = Pp[|C| = ∞] = Pp[FN ∩GN ] ≥ Pp[FN ] · Pp[GN ] .

If (1− p)λ(2) < 1, then we know that

Pp[G
c
N ] ≤

∞
∑

n=N

(1− p)nnσ(n− 1)

which goes to zero for N → ∞. For N large enough, we have therefore
Pp[GN ] ≥ 1/2. Since also Pp[FN ] > 0, it follows that θp > 0, if (1−p)λ(2) <
1 or p < (1 − λ(2)−1) which proves the claim. �

Definition. Given A ∈ A and ω ∈ Ω. We say that an edge e ∈ Ld is pivotal
for the pair (A,ω) if 1A(ω) 6= 1A(ωe), where ωe is the unique configuration
which agrees with ω except at the edge e.

Theorem 5.1.6 (Russo’s formula). Let A be an increasing event depending
only on finitely many edges of Ld. Then

d

dp
Pp[A] = Ep[N(A)] ,

where N(A) is the number of edges which are pivotal for A.

Proof. (i) We define a new probability space.
The family of probability spaces (Ω,A,Pp), can be embedded in one prob-
ability space

([0, 1]L
d

,B([0, 1]Ld

),P) ,
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where P is the product measure dxL
d

. Given a configuration η ∈ [0, 1]L
d

and
p ∈ [0, 1], we get a configuration in Ω by defining ηp(e) = 1 if η(e) < p and

ηp = 0 else. More generally, given p ∈ [0, 1]L
d

, we get configurations ηp(e) =
1 if η(e) < p(e) and ηp = 0 else. Like this, we can define configurations
with a large class of probability measures Pp =

∏

e∈Ld(p(e), 1− p(e)) with
one probability space and we have

Pp[A] = P[ηp ∈ A] .

(ii) Derivative with respect to one p(f).
Assume p and p′ differ only at an edge f such that p(f) ≤ p′(f). Then
{ηp ∈ A} ⊂ {ηp′ ∈ A} so that

Pp′ [A]− Pp[A] = P[ηp′ ∈ A]− P[ηp ∈ A]

= P[ηp′ ∈ A; ηp /∈ A]

= (p′(f)− p(f))Pp[f pivotal for A] .

Divide both sides by (p′(f)− p(f)) and let p′(f) → p(f). This gives

∂

∂p(f)
Pp[A] = Pp[f pivotal for A] .

(iii) The claim, if A depends on finitely many edges. If A depends on finitely
many edges, then Pp[A] is a function of a finite set {p(fi) }mi=1 of edge
probabilities. The chain rule gives then

d

dp
Pp[A] =

m
∑

i=1

∂

∂p(fi)
Pp[A]|p=(p,p,p,...,p)

=

m
∑

i=1

Pp[fi pivotal for A]

= Ep[N(A)] .

(iv) The general claim.
In general, define for every finite set F ⊂ E

pF (e) = p+ 1{e∈F}δ

where 0 ≤ p ≤ p+ δ ≤ 1. Since A is increasing, we have

Pp+δ[A] ≥ PpF [A]

and therefore

1

δ
(Pp+δ[A]− Pp[A]) ≥

1

δ
(PpF [A]− Pp[A]) →

∑

e∈F
Pp[e pivotal for A]

as δ → 0. The claim is obtained by making F larger and larger filling out
E. �
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Example. Let F = {e1, e2, . . . , em} ⊂ E be a finite set in of edges.

A = {the number of open edges in F is ≥ k} .
An edge e ∈ F is pivotal for A if and only if A \ {e} has exactly k− 1 open
edges. We have

Pp[e is pivotal] =

(

m− 1
k − 1

)

pk−1(1 − p)m−k

so that by Russo’s formula

d

dp
Pp[A] =

∑

e∈F
Pp[e is pivotal] = m

(

m− 1
k − 1

)

pk−1(1− p)m−k .

Since we know P0[A] = 0, we obtain by integration

Pp[A] =

m
∑

l=k

(

m
l

)

pl(1− p)m−1 .

Remark. If A does no more depend on finitely many edges, then Pp[A]
need no more be differentiable for all values of p.

Definition. The mean size of the open cluster is χ(p) = Ep[|C|].

Theorem 5.1.7 (Uniqueness). For p < pc, the mean size of the open cluster
is finite χ(p) <∞.

The proof of this theorem is quite involved and we will not give the full
argument. Let S(n, x) = {y ∈ Zd | |x − y| = ∑d

i=1 |xi| ≤ n} be the ball of
radius n around x in Zd and let An be the event that there exists an open
path joining the origin with some vertex in δS(n, 0).

Lemma 5.1.8. (Exponential decay of radius of the open cluster) If p < pc,
there exists ψp such that Pp[An] < e−nψp .

Proof. Clearly, |S(n, 0)| ≤ Cd · (n + 1)d with some constant Cd. Let M =
max{n | An occurs }. By definition of pc, if p < pc, then Pp[M < ∞] = 1.
We get

Ep[|C|] ≤
∑

n

Ep[|C| |M = n] · Pp[M = n]

≤
∑

n

|S(n, 0)|Pp[An]

≤
∑

n

Cd(n+ 1)de−nψp <∞ .
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�

Proof. We are concerned with the probabilities gp(n) = Pp[An]. Sine An
are increasing events, Russo’s formula gives

g′p(n) = Ep[N(An)] ,

where N(An) is the number of pivotal edges in An. We have

g′p(n) =
∑

e

Pp[e pivotal for A]

=
∑

e

1

p
Pp[e open and pivotal for A]

=
∑

e

1

p
Pp[A ∩ {e pivotal for A}]

=
∑

e

1

p
Pp[A ∩ {e pivotal for A}|A] · Pp[A]

=
∑

e

1

p
Ep[N(A) | A] · Pp[A]

=
∑

e

1

p
Ep[N(A) | A] · gp(n)

so that
g′p(n)

gp(n)
=

1

p
Ep[N(An) | An] .

By integrating up from α to β, we get

gα(n) = gβ(n) exp(−
∫ β

α

1

p
Ep[N(An) | An] dp)

≤ gβ(n) exp(−
∫ β

α

Ep[N(An) | An] dp)

≤ exp(−
∫ β

α

Ep[N(An) | An] dp) .

One needs to show then that Ep[N(An) |An] grows roughly linearly when
p < pc. This is quite technical and we skip it. �

Definition. The number of open clusters per vertex is defined as

κ(p) = Ep[|C|−1] =
∞
∑

n=1

1

n
Pp[|C| = n] .

Let Bn the box with side length 2n and center at the origin and let Kn be
the number of open clusters in Bn. The following proposition explains the
name of κ.
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Proposition 5.1.9. In L1(Ω,A,Pp) we have

Kn/|Bn| → κ(p) .

Proof. Let Cn(x) be the connected component of the open cluster in Bn
which contains x ∈ Zd. Define Γ(x) = |C(x)|−1.

(i)
∑

x∈Bn
Γn(x) = Kn.

Proof. If Σ is an open cluster of Bn, then each vertex x ∈ Σ contributes
|Σ|−1 to the left hand side. Thus, each open cluster contributes 1 to the
left hand side.

(ii) Kn

|Bn| ≥
1

|Bn|
∑

x∈Bn
Γ(x) where Γ(x) = |C(x)|−1.

Proof. Follows from (i) and the trivial fact Γ(x) ≤ Γn(x).

(iii) 1
|Bn|

∑

x∈Bn
Γ(x) → Ep[Γ(0)] = κ(p).

Proof. Γ(x) are bounded random variables which have a distribution which
is invariant under the ergodic group of translations in Zd. The claim follows
from the ergodic theorem.

(iv) lim infn→∞
Kn

|Bn| ≥ κ(p) almost everywhere.

Proof. Follows from (ii) and (iii).

(v)
∑

x∈B(n) Γn(x) ≤
∑

x∈B(n) Γ(x) +
∑

x∼δBn
Γn(x), where x ∼ Y means

that x is in the same cluster as one of the elements y ∈ Y ⊂ Zd.

(vi) 1
|Bn|

∑

x∈Bn
Γn(x) ≤ 1

|Bn|
∑

x∈Bn
Γ(x) + |δBn|

|Bn| . �

Remark. It is known that function κ(p) is continuously differentiable on
[0, 1]. It is even known that κ and the mean size of the open cluster χ(p) are
real analytic functions on the interval [0, pc). There would be much more
to say in percolation theory. We mention:
The uniqueness of the infinite open cluster:
For p > pc and if θ(pc) > 0 also for p = pc, there exists a unique infinite
open cluster.
Regularity of some functions θ(p)
For p > pc, the functions θ(p), χf (p), κ(p) are differentiable. In general,
θ(p) is continuous from the right.
The critical probability in two dimensions is 1/2.
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5.2 Random Jacobi matrices

Definition. A Jacobi matrix with IID potential Vω(n) is a bounded self-
adjoint operator on the Hilbert space

l2(Z) = {(. . . , x−1, x0, x1, x2 . . . ) |
∞
∑

k=−∞
x2k = 1 }

of the form

Lωu(n) =
∑

|m−n|=1

u(m) + Vω(n)u(n) = (∆ + Vω)(u)(n) ,

where Vω(n) are IID random variables in L∞. These operators are called
discrete random Schrödinger operators. We are interested in properties of
L which hold for almost all ω ∈ Ω. In this section, we mostly write the
elements ω of the probability space (Ω,A,P) as a lower index.

Definition. A bounded linear operator L has pure point spectrum, if there
exists a countable set of eigenvalues λi with eigenfunctions φi such that
Lφi = λiφi and φi span the Hilbert space l2(Z). A random operator has
pure point spectrum if Lω has pure point spectrum for almost all ω ∈ Ω.

Our goal is to prove the following theorem:

Theorem 5.2.1 (Fröhlich-Spencer). Let V (n) are IID random variables with
uniform distribution on [0, 1]. There exists λ0 such that for λ > λ0, the
operator Lω = ∆+ λ · Vω has pure point spectrum for almost all ω.

We will give a recent elegant proof of Aizenman-Molchanov following [97].

Definition. Given E ∈ C \ R, define the Green function

Gω(m,n,E) = [(Lω − E)−1]mn .

Let µ = µω be the spectral measure of the vector e0. This measure is
defined as the functional C(R) → R, f 7→ f(Lω)00 by f(Lω)00 = E[f(L)00].
Define the function

F (z) =

∫

R

dµ(y)

y − z

It is a function on the complex plane and called the Borel transform of the
measure µ. An important role will play its derivative

F ′(z) =

∫

R

dµ(λ)

(y − z)2
.
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Definition. Given any Jacobi matrix L, let Lα be the operator L + αP0,
where P0 is the projection onto the one-dimensional space spanned by δ0.
One calls Lα a rank-one perturbation of L.

Theorem 5.2.2 (Integral formula of Javrjan-Kotani). The average over all
specral measures dµα is the Lebesgue measure:

∫

R

dµα dα = dE .

Proof. The second resolvent formula gives

(Lα − z)−1 − (L− z)−1 = −α(Lα − z)−1P0(L− z)−1 .

Looking at 00 entry of this matrix identity, we obtain

Fα(z)− F (z) = −αFα(z)F (z)

which gives, when solved for Fα, the Aronzajn-Krein formula

Fα(z) =
F (z)

1 + αF (z)
.

We have to show that for any continuous function f : C → C

∫

R

∫

R

f(x) dµα(x) dα =

∫

f(x) dE(x)

and it is enough to verify this for the dense set of functions

{fz(x) = (x − z)−1 − (x+ i)−1 |z ∈ C \ R} .

Contour integration in the upper half plane gives
∫

R
fz(x) dx = 0 for

Im(z) < 0 and 2πi for Im(z) > 0. On the other hand

∫

fz(x)dµα(x) = Fα(z)− Fα(−i)

which is by the Aronzajn-Krain formula equal to

hz(α) :=
1

α+ F (z)−1
− 1

α+ F (−i)−1
.

Now, if ±Im(z) > 0, then ±ImF (z) > 0 so that ±ImF (z)−1 < 0. This
means that hz(α) has either two poles in the lower half plane if Im(z) < 0
or one in each half plane if Im(z) > 0. Contour integration in the upper
half plane (now with α) implies that

∫

R
hz(α) dα = 0 for Im(z) < 0 and

2πi for Im(z) > 0. �
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In theorem (2.12.2), we have seen that any Borel measure µ on the real line
has a unique Lebesgue decomposition dµ = dµac + dµsing = dµac + dµsc +
dµpp. The function F is related to this decomposition in the following way:

Proposition 5.2.3. (Facts about Borel transform) For ǫ → 0, the measures
π−1ImF (E + iǫ) dE converges weakly to µ.
dµsing({E | ImF (E + i0) = ∞ }) = 1,
dµ({E0}) = limǫ→0 ImF (E0 + iǫ)ǫ,
dµac(E) = π−1ImF (E + i0) dE.

Definition. Define for α 6= 0 the sets

Sα = {x ∈ R | F (x + i0) = −α−1, F ′(x) = ∞ }
Pα = {x ∈ R | F (x + i0) = −α−1, F ′(x) <∞ }
L = {x ∈ R | ImF (x+ i0) 6= 0 }

Lemma 5.2.4. (Aronzajn-Donoghue) The set Pα is the set of eigenvalues of
Lα. One has (dµα)sc(Sα) = 1 and (dµα)ac(L) = 1. The sets Pα, Sα, L are
mutually disjoint.

Proof. If F (E + i0) = −1/α, then

lim
ǫ→0

ǫ ImFα(E + iǫ) = (α2F ′(E))−2

since F (E+iǫ) = −1/α+iǫF ′(x)+o(ǫ) if F ′(E) <∞ and ǫ−1Im(1+αF ) →
∞ if F ′(E) = ∞ which means ǫ|1 + αF |−1 → 0 and since F → −1/α, one
gets ǫ|F/(1 + αF )| → 0.

The theorem of de la Vallée Poussin (see [91]) states that the set

{E | |Fα(E + i0)| = ∞ }

has full (dµα)sing measure. Because Fα = F/(1 + αF ), we know that
|Fα(E + i0)| = ∞ is equivalent to F (E + i0) = −1/α. �

The following criterion of Simon-Wolff [99] will be important. In the case of
IID potentials with absolutely continuous distribution, a spectral averaging
argument will then lead to pure point spectrum also for α = 0.
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Theorem 5.2.5 (Simon-Wolff criterion). For any interval [a, b] ⊂ R, the
random operator L has pure point spectrum if

F ′(E) <∞

for almost almost all E ∈ [a, b].

Proof. By hypothesis, the Lebesgue measure of S = {E | F ′(E) = ∞ } is
zero. This means by the integral formula that dµα(S) = 0 for almost all α.
The Aronzajn-Donoghue lemma (5.2.4) implies

µα(Sα ∩ [a, b]) = µα(L ∩ [a, b]) = 0

so that µα has only point spectrum. �

Lemma 5.2.6. (Formula of Simon-Wolff) For each E ∈ R, the sum
∑

n∈Z |(L − E − iǫ)−1
0n |2 increases monotonically as ǫ ց 0 and converges

point wise to F ′(E).

Proof. For ǫ > 0, we have

∑

n∈Z

|(L− E − iǫ)−1
0n |2 = ||(L− E − iǫ)−1δ0||2

= |[(L− E − iǫ)−1(L− E + iǫ)−1]00|

=

∫

R

dµ(x)

(x− E)2 + ǫ2

from which the monotonicity and the limit follow. �

Lemma 5.2.7. There exists a constant C, such that for all α, β ∈ C

∫ 1

0

|x− α|1/2|x− β|−1/2 dx ≥ C

∫ 1

0

|x− β|−1/2 dx .

Proof. We can assume without loss of generality that α ∈ [0, 1], because
replacing a general α ∈ C with the nearest point in [0, 1] only decreases the
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left hand side. Because the symmetry α 7→ 1−α leaves the claim invariant,
we can also assume that α ∈ [0, 1/2]. But then

∫ 1

0

|x− α|1/2|x− β|−1/2 dx ≥ (
1

4
)1/2

∫ 1

3/4

|x− β|−1/2 dx .

The function

h(β) =

∫ 1

3/4 |x− β|−1/2 dx
∫ 1

0 |x− α|1/2|x− β|−1/2 dx

is non-zero, continuous and satisfies h(∞) = 1/4. Therefore

C := inf
β∈C

h(β) > 0 .

�

The next lemma is an estimate for the free Laplacian.

Lemma 5.2.8. Let f, g ∈ l∞(Z) be nonnegative and let 0 < a < (2d)−1.

(1− a∆)f ≤ g ⇒ f ≤ (1− a∆)−1g .

[(1− a∆)−1]ij ≤ (2da)|j−i|(1− 2da)−1 .

Proof. Since ||∆|| < 2d, we can write (1− a∆)−1 =
∑∞
m=0(a∆)m which is

preserving positivity. Since [(a∆)m]ij = 0 for m < |i− j| we have

[(a∆)m]ij =

∞
∑

m=|i−j|
[(a∆)m]ij ≤

∞
∑

m=|i−j|
(2da)m .

�

We come now to the proof of theorem (5.2.1):

Proof. In order to prove theorem (5.2.1), we have by Simon-Wolff only to
show that F ′(E) < ∞ for almost all E. This will be achieved by proving
E[F ′(E)1/4] < ∞. By the formula of Simon-Wolff, we have therefore to
show that

sup
z∈C

E[(
∑

n

|G(n, 0, z)|2)1/4] <∞ .

Since

(
∑

n

|G(n, 0, z)|2)1/4 ≤
∑

n

|G(n, 0, z)|1/2 ,
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we have only to control the later the term. Define gz(n) = G(n, 0, z) and
kz(n) = E[|gz(n)|1/2]. The aim is now to give an estimate for

∑

n∈Z

kz(n)

which holds uniformly for Im(z) 6= 0.

(i)

E[|λV (n)− z|1/2|gz(n)|1/2] ≤ δn,0 +
∑

|j|=1

kz(n+ j) .

Proof. (L − z)gz(n) = δn0 means

(λV (n)− z)gz(n) = δn0 −
∑

|j|=1

gz(n+ j) .

Jensen’s inequality gives

E[|λV (n)− z|1/2|gz(n)|1/2] ≤ δn0 +
∑

|j|=1

kz(n+ j) .

(ii)
E[|λV (n)− z|1/2|gz(n)|1/2] ≥ Cλ1/2k(n) .

Proof. We can write gz(n) = A/(λV (n) + B), where A,B are functions of
{V (l)}l 6=n. The independent random variables V (k) can be realized over
the probability space Ω = [0, 1]Z =

∏

k∈Z Ω(k). We average now |λV (n) −
z|1/2|gz(n)|1/2 over Ω(n) and use an elementary integral estimate:

∫

Ω(n)

|λv − z|1/2|A|1/2
|λv +B|1/2 dv = |A|1/2

∫ 1

0

|v − zλ−1||v +Bλ−1|−1/2 dv

≥ C|A|1/2
∫ 1

0

|v +Bλ−1|−1/2 dv

= Cλ1/2
∫ 1

0

|A/(λv +B)|1/2

= E[gz(n)
1/2] = kz(n) .

(iii)

kz(n) ≤ (Cλ1/2)−1





∑

|j|=1

kz(n+ j) + δn0



 .

Proof. Follows directly from (i) and (ii).

(iv)
(1− Cλ1/2∆)k ≤ δn0 .

Proof. Rewriting (iii).
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(v) Define α = Cλ1/2.

kz(n) ≤ α−1(2d/α)|n|(1− 2d/α)−1 .

Proof. For Im(z) 6= 0, we have kz ∈ l∞(Z). From lemma (5.2.8) and (iv),
we have

k(n) ≤ α−1[(1−∆/α)−1]0n ≤ α−1(
2

α
)|n|(1− 2

α
)−1 .

(vi) For λ > 4C−2, we get a uniform bound for
∑

n kz(n).
Proof. Since Cλ1/2 < 1/2, we get the estimate from (v).
(vii) Pure point spectrum.
Proof. By Simon-Wolff, we have pure point spectrum for Lα for almost all
α. Because the set of random operators of Lα and L0 coincide on a set of
measure ≥ 1 − 2α, we get also pure point spectrum of Lω for almost all
ω. �

5.3 Estimation theory

Estimation theory is a branch of mathematical statistics. The aim is to
estimate continuous or discrete parameters for models in an optimal way.
This leads to extremization problems. We start with some terminology.

Definition. A collection (Ω,A,Pθ) of probability spaces is called a statis-
tical model. If X is a random variable, its expectation with respect to the
measure Pθ is denoted by Eθ[X ], its variance is Varθ[X ] = Eθ[(X−Eθ[X ])2].
If X is continuous, then its probability density function is denoted by fθ.
In that case one has of course Eθ[X ] =

∫

Ω fθ(x) dx. The parameters θ are
taken from a parameter space Θ, which is assumed to be a subset of R or
Rk.

Definition. A probability distribution µ = p(θ) dθ on (Θ,B) is called an
a priori distribution on Θ ⊂ R. It allows to define the global expectation
E[X ] =

∫

Θ
Eθ[X ] dµ(θ).

Definition. Given n independent and identically distributed random vari-
ables X1, . . . , Xn on the probability space (Ω,A,Pθ), we want to estimate
a quantity g(θ) using an estimator T (ω) = t(X1(ω), . . . , Xn(ω)).

Example. If the quantity g(θ) = Eθ[Xi] is the expectation of the ran-
dom variables, we can look at the estimator T (ω) = 1

n

∑n
j=1Xi(ω), the

arithmetic mean. The arithmetic mean is natural because for any data
x1, . . . , xn, the function f(x) =

∑n
i=1(xi − x)2 is minimized by the arith-

metic mean of the data.

Example. We can also take the estimator T (ω) which is the median of
X1(ω), . . . , Xn(ω). The median is a natural quantity because the function
f(x) =

∑n
i=1 |xi− x| is minimized by the median. Proof. |a− x|+ |b− x|=
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|b − a| + C(x), where C(x) is zero if a ≤ x ≤ b and C(x) = x − b if
x > b and D(x) = a − x if x < a. If n = 2m + 1 is odd, we have f(x) =
∑m

j=1 |xi−xn+1−i|+
∑

xj>xm
C(xj)+

∑

xj<xm
D(xj) which is minimized for

x = xm. If n = 2m, we have f(x) =
∑m
j=1 |xi−xn+1−i|+

∑

xj>xm+1
C(xj)+

∑

xj<xm−1
D(xj) which is minimized for x ∈ [xm, xm+1].

Example. Define the bias of an estimator T as

B(θ) = Bθ[T ] = Eθ[T ]− g(θ) .

The bias is also called the systematic error. If the bias is zero, the estimator
is called unbiased. With an a priori distribution on Θ, one can define the
global error B(T ) =

∫

Θ
B(θ) dµ(θ).

Proposition 5.3.1. A linear estimator T (ω) =
∑n

j=1 αiXi(ω) with
∑

i αi =
1 is unbiased for the estimator g(θ) = Eθ[Xi].

Proof. Eθ[T ] =
∑n

j=1 αiEθ[Xi] = Eθ[Xi]. �

Proposition 5.3.2. For g(θ) = Varθ[Xi] and fixed mean m, the estimator
T = 1

n

∑n
j=1(Xi −m)2 is unbiased. If the mean is unknown, the estimator

T = 1
n−1

∑n
i=1(Xi −X)2 with X = 1

n

∑n
i=1Xi is unbiased.

Proof. a) Eθ[T ] =
1
n

∑n
j=1(Xi −m)2 = Varθ[T ] = g(θ).

b) For T = 1
n

∑

i(Xi −Xi)
2, we get

Eθ[T ] = Eθ[X
2
i ]− Eθ[

1

n2

∑

i,j

XiXj]

= Eθ[X
2
i ]−

1

n
Eθ[X

2
i ]−

n(n− 1)

n2
Eθ[Xi]

2

= (1 − 1

n
)Eθ[X

2
i ]−

n− 1

n
Eθ[Xi]

2

=
n− 1

n
Varθ[Xi] .

Therefore n/(n− 1)T is the correct unbiased estimate. �

Remark. Part b) is the reason, why statisticians often take the average of
n

(n−1) (xi−x)2 as an estimate for the variance of n data points xi with mean

m if the actual mean value m is not known.
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Definition. The expectation of the quadratic estimation error

Errθ[T ] = Eθ[(T − g(θ))2]

is called the risk function or the mean square error of the estimator T . It
measures the estimator performance. We have

Errθ[T ] = Varθ[T ] +Bθ[T ] ,

where Bθ[T ] is the bias.

Example. If T is unbiased, then Errθ[T ] = Varθ[T ].

Example. The arithmetic mean is the ”best linear unbiased estimator”.
Proof. With T =

∑

i αiXi, where
∑

i αi = 1, the risk function is

Errθ[T ] = Varθ[T ] =
∑

i

α2
iVarθ[Xi] .

It is by Lagrange minimal for αi = 1/n.

Definition. For continuous random variables, the maximum likelihood func-
tion t(x1, . . . , xn) is defined as the maximum of θ 7→ Lθ(x1, . . . , xn) :=
fθ(x1) · · · · · fθ(xn). The maximum likelihood estimator is the random vari-
able

T (ω) = t(X1(ω), . . . , Xn(ω)) .

For discrete random variables, Lθ(x1, . . . , xn) would be replaced by Pθ[X1 =
x1, . . . , Xn = xn].
One also looks at the maximum a posteriori estimator, which is the maxi-
mum of

θ 7→ Lθ(x1, . . . , xn) = fθ(x1) · · · · · fθ(xn)p(θ) ,
where p(θ) dθ was the a priori distribution on Θ.

Definition. The minimax principle is the aim to find

min
T

max
θ
R(θ, T ) .

The Bayes principle is the aim to find

min
T

∫

Θ

(R(θ, T ) dµ(θ) .

Example. Assume fθ(x) =
1
2e

−|x−θ|. The maximum likelihood function

Lθ(x1, . . . , xn) =
1

2n
e−

∑
j |xi−θ|

is maximal when
∑

j |xi − θ| is minimal which means that t(x1, . . . , xn) is
the median of the data x1, . . . , xn.
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Example. Assume fθ(x) = θxe−θ/x! is the probability density of the Pois-
son distribution. The maximal likelihood function

lθ(x1, . . . , xn) =
e
∑

i log(θ)xi−nθ

x1! · · ·xn!

is maximal for θ =
∑n
i=1 xi/n.

Example. The maximum likelihood estimator for θ = (m,σ2) for Gaussian

distributed random variables fθ(x) = 1√
2πσ2

e
−(x−m)2

2σ2 has the maximum

likelihood function maximized for

t(x1, . . . , xn) = (
1

n

∑

i

xi,
1

n

∑

i

(xi − x)2) .

Definition. Define the Fisher information of a random variable X with
density fθ as

I(θ) =

∫

(
f ′
θ(x)

fθ(x)
)2fθ(x) dx .

If θ is a vector, one defines the Fisher information matrix

Iij(θ) =

∫ f ′
θi
f ′
θj

f2
θ

fθ dx .

Lemma 5.3.3. I(θ) = Varθ[
f ′
θ

fθ
].

Proof. E[
f ′
θ

fθ
] =

∫

Ω f
′
θdx = 0 so that

Varθ[
f ′
θ

fθ
] = Eθ[(

f ′
θ

fθ
)2] .

�

Lemma 5.3.4. I(θ) = −Eθ[(log(fθ)
′′].

Proof. Integration by parts gives:

E[log(fθ)
′′] =

∫

log(fθ)
′′fθ dx = −

∫

log(fθ)
′f ′
θ dx = −

∫

(f ′
θ/fθ)

2fθ dx .

�
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Definition. The score function for a continuous random variable is defined
as the logarithmic derivative ρθ = f ′

θ/fθ. One has I(θ) = Eθ[ρ
2
θ] = Varθ[ρθ].

Example. If X is a Gaussian random variable, the score function ρθ =
f ′(θ)/f(θ) = −(x − m)/(σ2) is linear and has variance 1. The Fisher in-
formation I is 1/σ2. We see that Var[X ] = 1/I. This is a special case
n = 1, T = X, θ = m of the following bound:

Theorem 5.3.5 (Rao-Cramer inequality).

Varθ[T ] ≥
(1 +B′(θ))2

nI(θ)
.

In the unbiased case, one has

Errθ[T ] ≥
1

nI(θ)

Proof. 1) θ +B(θ) = Eθ[T ] =
∫

t(x1, . . . , xn)Lθ(x1, . . . , xn) dx1 · · · dxn.
2)

1 +B′(θ) =

∫

t(x1, . . . , xn)L
′
θ(x1, . . . , xn) dx1 · · · dxn

=

∫

t(x1, . . . , xn)
L′
θ(x1, . . . , xn)

Lθ(x1, . . . , xn)
dx1 · · · dxn

= Eθ[T
L′
θ

Lθ
]

3) 1 =
∫

Lθ(x1, . . . , xn) dx1 · · · dxn implies

0 =

∫

L′
θ(x1, . . . , xn)/Lθ(x1, . . . , xn) = E[L′

θ/Lθ] .

4) Using 3) and 2)

Cov[T, L′
θ/Lθ] = Eθ[TL

′
θ/Lθ]− 0

= 1 +B′(θ) .

5)

(1 +B′(θ))2 = Cov2[T,
L′
θ

Lθ
]

≤ Varθ[T ]Varθ[
L′
θ

Lθ
]

= Varθ[T ]

n
∑

i=1

Eθ[(
f ′
θ(xi)

fθ(xi)
)2]

= Varθ[T ] nI(θ) ,
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where we used 4), the lemma and

L′
θ/Lθ =

n
∑

i=1

f ′
θ(xi)/fθ(xi) .

�

Definition. Closely related to the Fisher information is the already defined
Shannon entropy of a random variable X :

S(θ) = −
∫

fθ log(fθ) dx ,

as well as the power entropy

N(θ) =
1

2πe
e2S(θ) .

Theorem 5.3.6 (Information Inequalities). If X,Y are independent random
variables then the following inequalities hold:
a) Fisher information inequality: I−1

X+Y ≥ I−1
X + I−1

Y .
b) Power entropy inequality: NX+Y ≥ NX +NY .
c) Uncertainty property: IXNX ≥ 1.
In all cases, equality holds if and only if the random variables are Gaussian.

Proof. a) IX+Y ≤ c2IX + (1 − c)2IY is proven using the Jensen inequal-
ity (2.5.1). Take then c = IY /(IX + IY ).
b) and c) are exercises. �

Theorem 5.3.7 (Rao-Cramer bound). A random variable X with mean m
and variance σ2 satisfies: IX ≥ 1/σ2. Equality holds if and only if X is the
Normal distribution.

Proof. This is a special case of Rao-Cramer inequality, where θ is fixed,
n = 1. The bias is automatically zero. A direct computation giving also
uniqueness: E[(aX + b)ρ(X)] =

∫

(ax + b)f ′(x) dx = −a
∫

f(x) dx = −a
implies

0 ≤ E[(ρ(X) + (X −m)/σ2)2]

= E[(ρ(X)2] + 2E[(X −m)ρ(X)]/σ2 + E[(X −m)2/σ4]

≤ IX − 2/σ2 + 1σ2 .

Equality holds if and only if ρX is linear, that is if X is normal. �
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We see that the normal distribution has the smallest Fisher information
among all distributions with the same variance σ2.

5.4 Vlasov dynamics

Vlasov dynamics generalizes Hamiltonian n-body particle dynamics. It deals
with the evolution of the law Pt of a discrete random vector Xt. If Pt is
a discrete measure located on finitely many points, then it is the usual
dynamics of n bodies which attract or repel each other. In general, the
stochastic process Xt describes the evolution of densities or the evolution
of surfaces. It is an important feature of Vlasov theory that while the ran-
dom variables Xt stay smooth, their laws Pt can develop singularities. This
can be useful to model shocks. Due to the overlap of this section with geom-
etry and dynamics, the notation slightly changes in this section. We write
Xt for the stochastic process for example and not Xt as before.

Definition. Let Ω =M be a 2p-dimensional Euclidean space or torus with
a probability measure m and let N be an Euclidean space of dimension 2q.
Given a potential V : Rq → R, the Vlasov flow Xt = (f t, gt) : M → N is
defined by the differential equation

ḟ = g, ġ = −
∫

M

∇V (f(ω)− f(η)) dm(η) .

These equations are called the Hamiltonian equations of the Vlasov flow.
We can interpretXt as a vector-valued stochastic process on the probability
space (M,A,m). The probability space (M,A,m) labels the particles which
move on the target space N .

Example. If p = 0 andM is a finite set Ω = {ω1, . . . , ωn}, then Xt describes
the evolution of n particles (fi, gi) = X(ωi). Vlasov dynamics is therefore
a generalization of n-body dynamics. For example, if

V (x1, . . . .xn) =
∑

i

x2i
2
,

then ∇V (x) = x and the Vlasov Hamiltonian system

ḟ = g, ġ(ω) = −
∫

M

f(ω)− f(η) dm(η)

is equivalent to the n-body evolution

ḟi = gi

ġi = −
n
∑

j=1

(fi − fj) .

In a center of mass coordinate system where
∑n
i=1 fi(x) = 0, this simplifies

to a system of coupled harmonic oscillators

d2

dt2
fi(x) = −fi(x) .
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Example. If N = M = R2 and m is a measure, then the process Xt

describes a volume-preserving deformation of the plane M . In other words,
Xt is a one-parameter family of volume-preserving diffeomorphisms in the
plane.

Figure. An example with M =
N = R2, where the measure m
is located on 2 points. The Vlasov
evolution describes a deformation
of the plane. The situation is
shown at time t = 0. The coor-
dinates (x, y) describe the position
and the speed of the particles.

Figure. The situation at time t =
0.1. The two particles have evolved
in the phase space N . Each point
moves as ”test particle” in the
force field of the 2 particles. Even
so the 2 body problem is inte-
grable, its periodic motion acts like
a ”mixer” for the complicated evo-
lution of the test particles.

Example. LetM = N = R2 and assume that the measurem has its support
on a smooth closed curve C. The process Xt is again a volume-preserving
deformation of the plane. It describes the evolution of a continuum of par-
ticles on the curve. Dynamically, it can for example describe the evolution
of a curve where each part of the curve interacts with each other part. The
picture sequence below shows the evolution of a particle gas with support
on a closed curve in phase space. The interaction potential is V (x) = e−x.
Because the curve at time t is the image of the diffeomorphism Xt, it
will never have self intersections. The curvature of the curve is expected
to grow exponentially at many points. The deformation transformation
Xt = (f t, gt) satisfies the differential equation

d

dt
f = g

d

dt
g =

∫

M

e−(f(ω)−f(η)) dm(η) .

If r(s), s ∈ [0, 1] is the parameterization of the curve C so that m(r[a, b]) =
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(b− a), then the equations are

d

dt
f t(x) = gt(x)

d

dt
gt(x) =

∫ 1

0

e−(ft(x)−ft(r(s))) ds .

The evolved curve Ct at time t is parameterized by s→ (f t(r(s)), gt(r(s))).

Figure. The support
of the measure P0 on
N = R2.

Figure. The support
of the measure P0.4 on
N = R2.

Figure. The support
of the measure P1.2 on
N = R2.

Example. If Xt is a stochastic process on (Ω =M,A,m) with takes values
in N , then Pt is a probability measure on N defined by Pt[A] = m(X−1A).
It is called the push-forward measure or law of the random vector X . The
measure Pt is a measure in the phase space N . The Vlasov evolution defines
a family of probability spaces (N,B,Pt). The spatial particle density ρ is
the law of the random variable x(x, y) = x.

Example. Assume the measure P0 is located on a curve ~r(s) = (s, sin(s))
and assume that there is no particle interaction at all: V = 0. Then Pt is
supported on a curve (s+sin(s), sin(s)). While the spatial particle density
has initially a smooth density

√

1 + cos(s)2, it becomes discontinuous after
some time.
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Figure. Already for the free evo-
lution of particles on a curve in
phase space, the spatial particle
density can become non-smooth
after some time.

1 2 3 4 5 6

-1

-0.5

0.5

1

t=0 t=1 t=2 t=3

Example. In the case of the quadratic potential V (x) = x2/2 assumem has

a density ρ(x, y) = e−x
2−2y2 , then Pt has the density ρt(x, y) = f(x cos(t)+

y sin(t),−x sin(t) + y cos(t)). To get from this density in the phase space,
the spatial density of particles, we have to do integrate y out and do a
conditional expectation.

Lemma 5.4.1. (Maxwell) If Xt = (f t, gt) is a solution of the Vlasov Hamil-
tonian flow, then the law Pt = (Xt)∗m satisfies the Vlasov equation

Ṗt(x, y) + y · ∇xP
t(x, y)−W (x) · ∇yP

t(x, y) = 0

with W (x) =
∫

M
∇xV (x − x′) · Pt(x′, y′)) dy′dx′.

Proof. We have
∫

∇V (f(ω) − f(η)) dm(η) = W (f(ω)). Given a smooth
function h on N of compact support, we calculate

L =

∫

N

h(x, y)
d

dt
P t(x, y) dxdy

as follows:
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L =
d

dt

∫

N

h(x, y)P t(x, y) dxdy

=
d

dt

∫

M

h(f(ω, t), g(ω, t)) dm(ω)

=

∫

M

∇xh(f(ω, t), g(ω, t))g(ω, t) dm(ω)

−
∫

M

∇yh(f(ω, t), g(ω, t))

∫

M

∇V (f(ω)− f(η)) dm(η) dm(ω)

=

∫

N

∇xh(x, y)yP
t(x, y) dxdy −

∫

N

P t(x, y)∇yh(x, y)

∫

N

∇V (x− x′)P t(x′, y′) dx′dy′dxdy

= −
∫

N

h(x, y)∇xP
t(x, y)y dxdy

+

∫

N

h(x, y)W (x) · ∇yP
t(x, y) dxdy .

�

Remark. The Vlasov equation is an example of an integro-differential equa-
tion. The right hand side is an integral. In a short hand notation, the Vlasov
equation is

Ṗ + y · Px −W (x) · Py = 0 ,

where W = ∇xV ⋆ P is the convolution of the force ∇xV with P.

Example. V (x) = 0. Particles move freely. The Vlasov equation becomes
the transport equation Ṗ (x, y, t) + y · ∇xP

t(x, y) = 0 which is in one di-
mensions a partial differential equation ut + yux = 0. It has solutions
u(t, x, y) = u(u, x+ ty). Restricting this function to y = x gives the Burg-
ers equation ut + xux = 0.

Example. For a quadratic potential V (x) = x2, the Hamilton equations are

f̈(ω) = −(f(ω)−
∫

M

f(η) dm(η)) .

In center-of-mass-coordinates f̃ = f − E[f ], the system is a decoupled
system of a continuum of oscillators ḟ = g, ġ = −f with solutions

f(t) = f(0) cos(t) + g(0) sin(t), g(t) = −f(0) sin(t) + g(0) cos(t) .

The evolution for the density P is the partial differential equation

d

dt
Pt(x, y) + y · ∇xP

t(x, y)− x · ∇yP
t(x, y) = 0

written in short hand as ut+y·ux−x·uy = 0, which has the explicit solution
P t(x, y) = P 0(cos(t)x + sin(t)y,− sin(t)x + cos(t)y). It is an example of a
Hamilton-Jacobi equation.
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Example. On any Riemannian manifold with Laplace-Beltrami operator
∆, there are natural potentials: the Poisson equation ∆φ = ρ is solved by
φ = V ⋆ ρ, where ⋆ is the convolution. This defines Newton potentials on
the manifold. Here are some examples:

• N = R: V (x) = |x|
2 .

• N = T: V (x) = |x(2π−x)|
4π

• N = S2. V (x) = log(1 − x · x).
• N = R2 V (x) = 1

2π log |x|.
• N = R3 V (x) = 1

4π
1
|x| .

• N = R4 V (x) = 1
8π

1
|x|2 .

For example, for N = R, the Laplacian ∆f = f ′′ is the second deriva-
tive. It is diagonal in Fourier space: ∆̂f̂(k) = −k2f̂ , where k ∈ R. From

ˆDeltaf̂(k) = −k2f̂ = ρ̂(k) we get f̂(k) = −(1/k2)ρ̂(k), so that f = V ⋆ ρ,
where V is the function which has the Fourier transform V̂ (k) = −1/k2.
But V (x) = |x|/2 has this Fourier transform:

∫ ∞

−∞

|x|
2
e−ikx dx = − 1

k2
.

Also for N = T, the Laplacian ∆f = f ′′ is diagonal in Fourier space. It
is the 2π-periodic function V (x) = x(2π − x)/(4π), which has the Fourier
series V̂ (k) = −1/k2.

For general N = Rn, see for example [59]

Remark. The function Gy(x) = V (x− y) is also called the Green function
of the Laplacian. Because Newton potentials V are not smooth, establishing
global existence for the Vlasov dynamics is not easy but it has been done
in many cases [30]. The potential |x| models galaxy motion and appears in
plasma dynamics [93, 66, 84].

Lemma 5.4.2. (Gronwall) If a function u satisfies u′(t) ≤ |g(t)|u(t) for all

0 ≤ t ≤ T , then u(t) ≤ u(0) exp(
∫ t

0
|g(s)| ds) for 0 ≤ t ≤ T .

Proof. Integrating the assumption gives u(t) ≤ u(0) +
∫ t

0
g(s)u(s) ds. The

function h(t) satisfying the differential equation h′(t) = |g(t)|u(t) satisfies
h′(t) ≤ |g(t)|h(t). This leads to h(t) ≤ h(0) exp(

∫ t

0
|g(s)| ds) so that u(t) ≤

u(0) exp(
∫ t

0
|g(s)| ds). This proof for real valued functions [19] generalizes

to the case, where ut(x) evolves in a function space. One just can apply the
same proof for any fixed x. �
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Theorem 5.4.3 (Batt-Neunzert-Brown-Hepp-Dobrushin). If ∇xV is
bounded and globally Lipshitz continuous, then the Hamiltonian Vlasov
flow has a unique global solution Xt and consequently, the Vlasov equa-
tion has a unique and global solution P t in the space of measures. If V and
P0 are smooth, then Pt is piecewise smooth.

Proof. The Hamiltonian differential equation for X = (f, g) evolves on on
the complete metric space of all continuous maps from M to N . The dis-
tance is d(X,Y ) = supω∈M d(X(ω), Y (ω)), where d is the distance in N .

We have to show that the differential equation ḟ = g and ġ = G(f) =
−
∫

M
∇xV (f(ω)− f(η)) dm(η) in C(M,N) has a unique solution: because

of Lipshitz continuity

||G(f)−G(f ′)||∞ ≤ 2||D(∇xV )||∞ · ||f − f ′||∞
the standard Piccard existence theorem for differential equations assures
local existence of solutions.

The Gronwall’s lemma assures that ||X(ω)|| can not grow faster than ex-
ponentially. This gives the global existence. �

Remark. If m is a point measure supported on finitely many points, then
one could also invoke the global existence theorem for differential equations.
For smooth potentials, the dynamics depends continuously on the measure
m. One could approximate a smooth measure m by point measures.

Definition. The evolution of DXt at a point ω ∈M is called the linearized
Vlasov flow. It is the differential equation

Df̈(ω) = −
∫

M

∇2V (f(ω)− f(η)) dm(η)Df(ω) =: B(f t)Df(ω)

and we can write it as a first order differential equation

d

dt
DX =

d

dt

[

f
g

]

=

[

0 1
∫

M −∇2V (f(ω)− f(η)) dm(η) 0

] [

f
g

]

= A(f t)

[

f
g

]

.

Remark. The rank of the matrix DXt(ω) stays constant. Df t(ω) is a lin-
ear combination of Df0(ω) and Dg0(ω). Critical points of f t can only
appear for ω, where Df0(ω), Dḟ0(ω) are linearly dependent. More gen-
erally Yk(t) = {ω ∈ M | DXt(ω) has rank 2q − k = dim(N) − k} is time
independent. The set Yq contains {ω | D(f)(ω) = λD(g)(ω), λ ∈ R∪{∞}}.
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Definition. The random variable

λ(ω) = lim sup
t→∞

1

t
log(||D(Xt(ω))||) ∈ [0,∞]

is called the maximal Lyapunov exponent of the SL(2q,R)-cocycle At =
A(f t) along an orbit Xt = (f t, gt) of the Vlasov flow. The Lyapunov expo-
nent could be infinite. Differentiation of Df̈ = B(f t)f t at a critical point

ωt gives D2f̈ t(ωt) = B(f t)D2f t(ωt). The eigenvalues λj of the Hessian

D2f satisfy λ̈j = B(f t)λj .

Definition. Time independent solutions of the Vlasov equation are called
equilibrium measures or stationary solutions.

Definition. One can construct some of them with a Maxwellian ansatz

P (x, y) = C exp(−β(y
2

2
+

∫

V (x− x′)Q(x′) dx)) = S(y)Q(x) ,

The constant C is chosen such that
∫

Rd S(y) dy = 1. These measures are
called Bernstein-Green-Kruskal (BGK) modes.

Proposition 5.4.4. If Q : N 7→ R satisfies the integral equation

Q(x) = exp(−
∫

Rd

βV (x− x′)Q(x′)) dx′ = exp(−βV ⋆ Q(x))

then the Maxwellian distribution P (x, y) = S(y)Q(x) is an equilibrium
solution of the Vlasov equation to the potential V .

Proof.

y∇xP = yS(y)Qx(x)

= yS(y)(−βQ(x)

∫

Rd

∇xV (x− x′)Q(x′) dx′)

and

∫

N

∇xV (x− x′)∇yP (x, y)P (x
′, y′) dx′dy′

= Q(x)(−βS(y)y)
∫

∇xV (x− x′)Q(x′) dx′

gives y∇xP (x, y) =
∫

N ∇xV (x− x′)∇yP (x, y)P (x
′, y′) dx′ dy′. �
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5.5 Multidimensional distributions

Random variables which are vector-valued can be treated in an analogous
way as random variables. One often adds the term ”multivariate” to indi-
cate that one has multiple dimensions.

Definition. A random vector is a vector-valued random variable. It is in
Lp if each coordinate is in Lp. The expectation E[X ] of a random vector
X = (X1, . . . , Xd) is the vector (E[X1], . . . ,E[Xd]), the variance is the
vector (Var[X1], . . . ,Var[Xd]).

Example. The random vector X = (x3, y4, z5) on the unit cube Ω = [0, 1]3

with Lebesgue measure P has the expectation E[X ] = (1/4, 1/5, 1/6).

Definition. Assume X = (X1, . . . , Xd) is a random vector in L∞. The law
of the random vector X is a measure µ on Rd with compact support. After
some scaling and translation we can assume that µ be a bounded Borel
measure on the unit cube Id = [0, 1]d.

Definition. The multi-dimensional distribution function of a random vector
X = (X1, . . . , Xd) is defined as

FX(t) = F(X1,..,Xd)(t1, .., td) = P[X1 ≤ t1, . . . , Xd ≤ td] .

For a continuous random variable, there is a density fX(t) satisfying

FX(t) =

∫ t1

−∞
. . .

∫ td

−∞
f(s1, .., sd) ds1 · · · dsd .

The multi-dimensional distribution function is also called multivariate dis-
tribution function.

Definition. We use in this section the multi-index notation xn =
∏d
i=1 x

ni

i .
Denote by µn =

∫

Id x
n dµ the n’th moment of µ. If X is a random

vector, with law µ, call µn(X) the n’th moment of X . It is equal to
E[Xn] = E[Xn1

1 Xn2
2 · · ·Xnd

d ]. We call the map n ∈ Nd 7→ µn the moment
configuration or, if d = 1, the moment sequence. We will tacitly assume
µn = 0, if at least one coordinate ni in n = (n1, . . . , nd) is negative.
If X is a continuous random vector, the moments satisfy

µn(X) =

∫

Rd

xnf(x) dx

which is a short hand notation for

∫ ∞

−∞
· · ·

∫ ∞

−∞
xnd
1 · · ·xnd

n f(x1, .., xd) dx1 · · · dxd .
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Example. The n = (7, 3, 4)’th moment of the random vectorX = (x3, y4, z5)
is

E[Xn1
1 Xn2

2 Xn3
3 ] = E[x21y12z20] =

1

22

1

13

1

20
.

The random vector X is continuous and has the probability density

f(x, y, z) = (
x−2/3

3
)(
y−3/4

4
)(
z−4/5

5
) .

Remark. As in one dimension, one can define a multidimensional moment
generating function

MX(t) = E[et·X ] = E[et1X1et2X2 · · · etdXd ]

which contains all the information about the moments because of the multi-
dimensional moment formula

E[Xn]j =

∫

Rd

xnj dµ =
dnMX

dtnj
(t)|t=0 .

where the n’th derivative is defined as

d

dtn
f(x) =

∂n1

∂xn1
1

∂n2

∂xn2
2

· · · ∂
nd

∂xnd

d

f(x1, . . . , xd) .

Example. The random variable X = (x,
√
y, z1/3) has the moment gener-

ating function

M(s, t, u) =

∫ 1

0

∫ 1

0

∫ 1

0

esx+t
√
y+uz1/3 dxdydz

=
(es − 1)

s

2 + 2et(t− 1)

t2
−6 + 3eu(2− 2u+ u2)

u3
.

Because the components X1, X2, X3 in this example were independent ran-
dom variables, the moment generating function is of the form

M(s)M(t)M(u) ,

where the factors are the one-dimensional moments of the one-dimensional
random variables X1, X2 and X3.

Definition. Let ei be the standard basis in Zd. Define the partial difference
(∆ia)n = an−ei − an on configurations and write ∆k =

∏

i∆
ki
i . Unlike the

usual convention, we take a particular sign convention for ∆. This allows
us to avoid many negative signs in this section. By induction in

∑d
i=1 ni,

one proves the relation

(∆kµ)n =

∫

Id
xn−k(1− x)k dµ (5.1)

using xn−ei−k(1−x)k−xn−k(1−x)k = xn−ei−k(1−x)k+ei . To improve read-

ability, we also use notation like k
n =

∏n
i=1

ki
ni

or

(

n
k

)

=
∏d
i=1

(

ni
ki

)

or
∑n

k=0 =
∑n1

k1=0 · · ·
∑nd

kd=0. We mean n → ∞ in the sense that ni → ∞
for all i = 1 . . . d.
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Definition. Given a continuous function f : Id → R. For n ∈ Nd, ni > 0 we
define the higher dimensional Bernstein polynomials

Bn(f)(x) =

n
∑

k=0

f(
n1

k1
, . . . ,

nd
kd

)

(

n
k

)

xk(1 − x)n−k .

Lemma 5.5.1. (Multidimensional Bernstein) In the uniform topology in
C(Id), we have Bn(f) → f if n→ ∞.

Proof. By the Weierstrass theorem, multi-dimensional polynomials are dense
in C(Id) as they separate points in C(Id). It is therefore enough to prove

the claim for f(x) = xm =
∏d
i=1 x

mi

i . Because Bn(y
m)(x) is the product of

one dimensional Bernstein polynomials

Bn(y
m)(x) =

d
∏

i=1

Bni(y
mi

i )(xi) ,

the claim follows from the result corollary (2.6.2) in one dimensions. �

Remark. Hildebrandt and Schoenberg refer for the proof of lemma (5.5.1)
to Bernstein’s proof in one dimension. While a higher dimensional adapta-
tion of the probabilistic proof could be done involving a stochastic process
in Zd with drift xi in the i’th direction, the factorization argument is more
elegant.

Theorem 5.5.2 (Hausdorff,Hildebrandt-Schoenberg). There is a bijection
between signed bounded Borel measures µ on [0, 1]d and configurations µn
for which there exists a constant C such that

n
∑

k=0

|
(

n
k

)

(∆kµ)n| ≤ C, ∀n ∈ Nd . (5.2)

A configuration µn belongs to a positive measure if and only if additionally
to (5.2) one has (∆kµ)n ≥ 0 for all k, n ∈ Nd.

Proof. (i) Because by lemma (5.5.1), polynomials are dense in C(Id), there
exists a unique solution to the moment problem. We show now existence
of a measure µ under condition (5.2). For a measures µ, define for n ∈ Nd
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the atomic measures µ(n) on Id which have weights

(

n
k

)

(∆kµ)n on the

∏d
i=1(ni + 1) points (n1−k1

n1
, . . . , nd−kd

nd
) ∈ Id with 0 ≤ ki ≤ ni. Because

∫

Id
xmdµ(n)(x) =

n
∑

k=0

(

n
k

)

(
n− k

n
)m(∆kµ)n

=

∫

Id

n
∑

k=0

(

n
k

)

(
n− k

n
)mxn−k(1− x)k dµ(x)

=

∫

Id

n
∑

k=0

(

n
k

)

(
k

n
)mxk(1 − x)n−k dµ(x)

=

∫

Id
Bn(y

m)(x) dµ(x) →
∫ 1

0

xm dµ(x) ,

we know that any signed measure µ which is an accumulation point of µ(n),
where ni → ∞ solves the moment problem. The condition (5.2) implies that
the variation of the measures µ(n) is bounded. By Alaoglu’s theorem, there
exists an accumulation point µ.

(ii) The left hand side of (5.2) is the variation ||µ(n)|| of the measure µ(n).
Because by (i) µ(n) → µ, and µ has finite variation, there exists a constant
C such that ||µ(n)|| ≤ C for all n. This establishes (5.2).

(iii) We see that if (∆kµ)n ≥ 0 for all k, then the measures µ(n) are all
positive and therefore also the measure µ.

(iv) If µ is a positive measure, then by (5.1)
(

n
k

)

(∆kµ)n =

(

n
k

)∫

Id
xn−k(1 − x)k dµ(x) ≥ 0 .

�

Remark. Hildebrandt and Schoenberg noted in 1933, that this result gives
a constructive proof of the Riesz representation theorem stating that the
dual of C(Id) is the space of Borel measures M(Id).

Definition. Let δ(x) denote the Dirac point measure located on x ∈ Id. It
satisfies

∫

Id δ(x) dy = x.

We extract from the proof of theorem (5.5.2) the construction:

Corollary 5.5.3. An explicit finite constructive approximations of a given
measure µ on Id is given for n ∈ Nd by the atomic measures

µ(n) =
∑

0≤ki≤ni

(

n
k

)

(∆kµ)nδ((
n1 − k1
n1

, . . . ,
nd − kd
nd

)) .
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Hausdorff established a criterion for absolutely continuity of a measure µ
with respect to the Lebesgue measure on [0, 1] [73]. This can be generalized
to find a criterion for comparing two arbitrary measures and works in d
dimensions.

Definition. As usual, we call a measure µ on Id uniformly absolutely con-
tinuous with respect to ν, if it satisfies µ = f dν with f ∈ L∞(Id).

Corollary 5.5.4. A positive probability measure µ is uniformly absolutely
continuous with respect to a second probability measure ν if and only if
there exists a constant C such that (∆kµ)n ≤ C · (∆kν)n for all k, n ∈ Nd.

Proof. If µ = fν with f ∈ L∞(Id), we get using (5.1)

(∆kµ)n =

∫

Id
xn−k(1− x)k dµ(x)

=

∫

Id
xn−k(1− x)k fdν(x)

≤ ||f ||∞
∫

Id
xn−k(1− x)k dν(x)

= ||f ||∞(∆kν)n .

On the other hand, if (∆kµ)n ≤ C(∆kν)n then ρn = C(∆kν)n − (∆kµ)n
defines by theorem (5.5.2) a positive measure ρ on Id. Since ρ = Cν − µ,
we have for any Borel set A ⊂ Id ρ(A) ≥ 0. This gives µ(A) ≤ Cν(A) and
implies that µ is absolutely continuous with respect to ν with a function f
satisfying f(x) ≤ C almost everywhere. �

This leads to a higher dimensional generalization of Hausdorff’s result
which allows to characterize the continuity of a multidimensional random
vector from its moments:

Corollary 5.5.5. A Borel probability measure µ on Id is uniformly abso-
lutely continuous with respect to Lebesgue measure on Id if and only if

|∆kµn| ≤
(

n
k

)

∏d
i=1(ni + 1) for all k and n.

Proof. Use corollary (5.5.4) and
∫

Id x
n dx =

∏

i

(

ni
ki

)

∏

i(ni + 1). �

There is also a characterization of Hausdorff of Lp measures on I1 = [0, 1]
for p > 2. This has an obvious generalization to d dimensions:



5.6. Poisson processes 319

Proposition 5.5.6. Given a bounded positive probability measure µ ∈
M(Id) and assume 1 < p < ∞. Then µ ∈ Lp(Id) if and only if there
exists a constant C such that for all k, n

(n+ 1)p−1
n
∑

k=0

(∆k(µ)n

(

n
k

)

)p ≤ C . (5.3)

Proof. (i) Let µ(n) be the measures of corollary (5.5.3). We construct first
from the atomic measures µ(n) absolutely continuous measures µ̃(n) =
g(n)dx on Id given by a function g which takes the constant value

(|∆k(µ)n|
(

n
k

)

)p
d
∏

i=1

(ni + 1)p

on a cube of side lengths 1/(ni + 1) centered at the point (n − k)/n ∈ Id.

Because the cube has Lebesgue volume (n+1)−1 =
∏d
i=1(ni+1)−1, it has

the same measure with respect to both µ̃(n) and g(n)dx. We have therefore
also g(n)dx→ µ weakly.

(ii) Assume µ = fdx with f ∈ Lp. Because g(n)dx → fdx in the weak
topology for measures, we have g(n) → f weakly in Lp. But then, there
exists a constant C such that ||g(n)||p ≤ C and this is equivalent to (5.3).

(iii) On the other hand, assumption (5.3) means that ||g(n)||p ≤ C, where
g(n) was constructed in (i). Since the unit-ball in the reflexive Banach space
Lp(Id) is weakly compact for p ∈ (0, 1), a subsequence of g(n) converges to
a function g ∈ Lp. This implies that a subsequence of g(n)dx converges as
a measure to gdx which is in Lp and which is equal to µ by the uniqueness
of the moment problem (Weierstrass). �

5.6 Poisson processes

Definition. A Poisson process (S, P,Π, N) over a probability space (Ω,F , Q)
is given by a complete metric space S, a non-atomic finite Borel measure
P on S and a function ω 7→ Π(ω) ⊂ S from Ω to the set of finite subsets of
S such that for every measurable set B ⊂ S, the map

ω → NB(ω) =
P [S]

|Π(ω)| |Π(ω) ∩B|

is a Poisson distributed random variable with parameter P[B]. For any
finite partition {Bi}ni=1 of S, the set of random variables {NBi}ni=1 have to
be independent. The measure P is called the mean measure of the process.
Here |A| denotes the cardinality of a finite set A. It is understood that
NB(ω) = 0 if ω ∈ S0 = {0}.
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Example. We have encountered the one-dimensional Poisson process in
the last chapter as a martingale. We started with IID Poisson distributed
random variables Xk which are ”waiting times” and defined Nt(ω) =
∑∞

k=1 1Sk(ω)≤t. Lets translate this into the current framework. The set S
is [0, t] with Lebesgue measure P as mean measure. The set Π(ω) is the
discrete point set Π(ω) = {Sn(ω) | n = 1, 2, 3, . . . }∩S. For every Borel set
B in S, we have

NB(ω) = t
|Π(ω) ∩B|
|Π(ω)| .

Remark. The Poisson process is an example of a point process, because
we can see it as assigning a random point set Π(ω) on S which has density
P on S. If S is part of the Euclidean space and the mean measure P is
continuous P = fdx, then the interpretation is that f(x) is the average
density of points at x.

,

Figure. A Poisson process in R2

with mean density

P =
e−x

2−y2

2π
dxdy .

Theorem 5.6.1 (Existence of Poisson processes). For every non-atomic mea-
sure P on S, there exists a Poisson process.

Proof. Define Ω =
⋃∞
d=0 S

d, where Sd = S×· · ·×S is the Cartesian product
and S0 = {0}. Let F be the Borel σ-algebra on Ω. The probability measure
Q restricted to Sd is the product measure (P×P×· · ·×P)·Q[NS = d], where
Q[NS = d] = Q[Sd] = e−P [S](d!)−1P [S]d. Define Π(ω) = {ω1, . . . , ωd} if
ω ∈ Sd and NB as above. One readily checks that (S, P,Π, N) is a Poisson
process on the probability space (Ω,F , Q): For any measurable partition
{Bj}mj=0 of S, we have

Q[NB1 = d1, . . . , NBm = dm | NS = d0+
m
∑

j=1

dj = d] =
d!

d0! · · · dm!

m
∏

j=0

P [Bj ]
dj

P [S]dj
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so that the independence of {NBj}mj=1 follows:

Q[NB1 = d1, . . . , NBm = dm] =

∞
∑

d=d1+···+dm
Q[NS = d] Q[NB1

= d1, . . . , NBm = dm | NS = d]

=

∞
∑

d=d1+···+dm

e−P [S]

d!

d!

d0! · · · dm!

m
∏

j=0

P [Bj ]
dj

= [

∞
∑

d0=0

e−P [B0]P [B0]
d0

d0!
]

m
∏

j=1

e−P [Bj ]P [Bj ]
dj

dj !

=

m
∏

j=1

e−P [Bj ]P [Bj ]
dj

dj !

=

m
∏

j=1

Q[NBj = dj ] .

This calculation in the casem = 1, leaving away the last step shows thatNB
is Poisson distributed with parameter P [B]. The last step in the calculation
is then justified. �

Remark. The random discrete measure P (ω)[B] = NB(ω) is a normal-
ized counting measure on S with support on Π(ω). The expectation of
the random measure P (ω) is the measure P̃ on S defined by P̃ [B] =
∫

Ω P (ω)[B] dQ(ω). But this measure is just P :

Lemma 5.6.2. P =
∫

Ω
P (ω) dQ(ω) = P̃ .

Proof. Because the Poisson distributed random variable NB(ω) = P (ω)[B]
has by assumption the Q-expectation P [B] =

∑∞
k=0 k Q[NB = k] =

∫

Ω P (ω)[B] dQ(ω) one gets P =
∫

Ω P (ω) dQ(ω) = P̃ . �

Remark. The existence of Poisson processes can also be established by
assigning to a basis {ei } of the Hilbert space L2(S,P) some independent
Poisson-distributed random variables Zi = φ(ei) and define then a map
φ(f) =

∑

i aiφ(ei) if f =
∑

i aiei. The image of this map is a Hilbert
space of random variables with dot product Cov[φ(f), φ(g)] = (f, g). Define
NB = φ(1B). These random variables have the correct distribution and are
uncorrelated for disjoint sets Bj .

Definition. A point process is a map Π a probability space (Ω,F , Q) to
the set of finite subsets of a probability space (S,B,P) such that NB(ω) :=
|ω ∩B| is a random variable for all measurable sets B ∈ B.
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Definition. Assume Π is a point process on (S,B,P). For a function f :
S → R+ in L1(S,P), define the random variable

Σf (ω) =
∑

z∈Π(ω)

f(z) .

Example. For a Poisson process and f = 1B, one gets Σf (ω) = NB(ω).

Definition. The moment generating function of Σf is defined as for any
random variable as

MΣf
(t) = E[etΣf ] .

It is called the characteristic functional of the point process.

Example. For a Poisson process and f = a1B, the moment generating
function of Σf (ω) = NB(ω) is E[e

atNB ] = eP [B](1−eat). We have computed
the moment generating function of a Poisson distributed random variable
in the first chapter.

Example. For a Poisson process and f =
∑n

k=1 aj1Bk
, where Bk are disjoint

sets, we have the characteristic functional

n
∏

j=1

E[eajtNBj ] = e
∑n

j=1 P [Bj ](1−eajt) .

Example. For a Poisson process, and f ∈ L1(S,P), the moment generating
function of Σf is

MΣf
(t) = exp(−

∫

S

(1− exp(tf(z))) dP (z)) .

This is called Campbell’s theorem. The proof is done by writing f =
f+ − f−, where both f+ and f− are nonnegative, then approximating
both functions with step functions f+

k =
∑

j a
+
j 1B+

j
=

∑

j f
+
kj and f−

k =
∑

j a
−
j 1B−

j

∑

j f
−
kj . Because for Poisson process, the random variables Σf±

kj

are independent for different j or different sign, the moment generating
function of Σf is the product of the moment generating functions Σf±

kj
=

N±
Bj

.

The next theorem of Alfréd Rényi (1921-1970) gives a handy tool to check
whether a point process, a random variable Π with values in the set of
finite subsets of S, defines a Poisson process.

Definition. A k-cube in an open subset S of Rd is is a set

d
∏

i=1

[
ni
2k
,
(ni + 1)

2k
) .
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Theorem 5.6.3 (Rényi’s theorem, 1967). Let P be a non-atomic probability
measure on (S,B) and let Π be a point process on (Ω,F , Q). Assume for any
finite union of k-cubes B ⊂ S, Q[NB = 0] = exp(−P [B]). Then (S, P,Π, N)
is a Poisson process with mean measure P .

Proof. (i) Define O(B) = {ω ∈ Ω | NB(ω) = 0 } ⊂ Ω for any measurable
set B in S. By assumption, Q[O(B)] = exp(−P [B]).

(ii) For m disjoint k-cubes {Bj}mj=1, the sets O(Bj) ⊂ Ω are independent.
Proof:

Q[

m
⋂

j=1

O(Bj)] = Q[{N⋃m
j=1 Bj

= 0}]

= exp(−P [
m
⋃

j=1

Bj])

=

m
∏

j=1

exp(−P [Bj])

=

m
∏

j=1

Q[O(Bj)] .

(iii) We count the number of points in an open open subset U of S using
k-cubes: define for k > 0 the random variable Nk

U (ω) as the number k-
cubes B for which ω ∈ O(B ∩ U). These random variable Nk

U (ω) converge
to NU (ω) for k → ∞, for almost all ω.

(iv) For an open set U , the random variable NU is Poisson distributed
with parameter P [U ]. Proof: we compute its moment generating function.
Because for different k-cubes, the sets O(Bj) ⊂ O(U) are independent,
the moment generating function of Nk

U =
∑

k 1O(B)j) is the product of the
moment generating functions of 1O(B)j):

E[etN
k
U ] =

∏

k−cube B

(Q[O(B)] + et(1 −Q[O(B)]))

=
∏

k−cube B

(exp(−P [B]) + et(1 − exp(−P [B]))) .

Each factor of this product is positive and the monotone convergence the-
orem shows that the moment generating function of NU is

E[etNU ] = lim
k→∞

∏

k−cube B

(exp(−P [B]) + et(1− exp(−P [B]))) .
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which converges to exp(P [U ](1 − et)) for k → ∞ if the measure P is non-
atomic.

Because the generating function determines the distribution of NU , this
assures that the random variables NU are Poisson distributed with param-
eter P [U ].

(v) For any disjoint open sets U1, . . . , Um, the random variables {NUj )}mj=1

are independent. Proof: the random variables {Nk
Uj
)}mj=1 are independent

for large enough k, because no k-cube can be in more than one of the sets
Uj , The random variables {Nk

Uj
)}mj=1 are then independent for fixed k. Let-

ting k → ∞ shows that the variables NUj are independent.

(vi) To extend (iv) and (v) from open sets to arbitrary Borel sets, one
can use the characterization of a Poisson process by its moment generating
function of f ∈ L1(S,P). If f =

∑

ai1Uj for disjoint open sets Uj and
real numbers aj , we have seen that the characteristic functional is the
characteristic functional of a Poisson process. For general f ∈ L(S,P) the
characteristic functional is the one of a Poisson process by approximation
and the Lebesgue dominated convergence theorem (2.4.3). Use f = 1B to
verify that NB is Poisson distributed and f =

∑

ai1Bj with disjoint Borel
sets Bj to see that {NBj)}mj=1 are independent. �

5.7 Random maps

Definition. Let (Ω,A,P) be a probability space and M be a manifold with
Borel σ-algebra B. A random diffeomorphism on M is a measurable map
from M × Ω → M so that x 7→ f(x, ω) is a diffeomorphism for all ω ∈ Ω.
Given a P measure preserving transformation T on Ω, it defines a cocycle

S(x, ω) = (f(x, ω), T (ω))

which is a map on M × Ω.

Example. If M is the circle and f(x, c) = x+ c sin(x) is a circle diffeomor-
phism, we can iterate this map and assume, the parameter c is given by
IID random variables which change in each iteration. We can model this
by taking (Ω,A,P) = ([0, 1]N,BN, νN) where ν is a measure on [0, 1] and
take the shift T (xn) = xn+1 and to define

S(x, ω) = (f(x, ω0), T (ω)) .

Iterating this random logistic map is done by taking IID random variables
cn with law ν and then iterate

x0, x1 = f(x0, c0), x2 = f(x1, c1) . . . .
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Example. If (Ω,A,P, T ) is an ergodic dynamical system, and A : Ω →
SL(d,R) is measurable map with values in the special linear group SL(d,R)
of all d × d matrices with determinant 1. With M = Rd, the random
diffeomorphism f(x, v) = A(x)v is called a matrix cocycle. One often uses
the notation

An(x) = A(T n−1(x)) · A(T n−2(x)) · · ·A(T (x)) ·A(x)

for the n’th iterate of this random map.

Example. If M is a finite set {1, .., n} and P = Pij is a Markov transition
matrix, a matrix with entries Pij ≥ 0 and for which the sum of the column
elements is 1 in each column. A random map for which f(xi, ω) = xj with
probability Pij is called a finite Markov chain.

Random diffeomorphisms are examples of Markov chains as covered in Sec-
tion (3.14) of the chapter on discrete stochastic processes:

Lemma 5.7.1. a) Any random map defines transition probability functions
P :M × B → [0, 1]:

P(x,B) = P[f(x, ω) ∈ B] .

b) If An is a filtration of σ-algebras and Xn(ω) = T n(ω) is An adapted,
then P is a discrete Markov process.

Proof. a) We have to check that for all x, the measure P(x, ·) is a prob-
ability measure on M . This is easily be done by checking all the axioms.
We further have to verify that for all B ∈ B, the map x → P(x,B) is
B-measurable. This is the case because f is a diffeomorphism and so con-
tinuous and especially measurable.
b) is the definition of a discrete Markov process. �

Example. If Ω = (∆N,FN, νN) and T (x) is the shift, then the random map
defines a discrete Markov process.

Definition. In case, we get IID ∆-valued random variables Xn = T n(x)0.
A random map f(x, ω) defines so a IID diffeomorphism-valued random
variables f1(x)(ω) = f(x,X1(ω)), f2(x) = f(x,X2(ω)). We will call a ran-
dom diffeomorphism in this case an IID random diffeomorphism. If the
transition probability measures are continuous, then the random diffeomor-
phism is called a continuous IID random diffeomorphism. If f(x, ω) depends
smoothly on ω and the transition probability measures are smooth, then
the random diffeomorphism is called a smooth IID random diffeomorphism.
It is important to note that ”continuous” and ”smooth” in this definition is
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only with respect to the transition probabilities that ∆ must have at least
dimension d ≥ 1. With respect to M , we have already assumed smoothness
from the beginning.

Definition. Ameasure µ onM is called a stationary measure for the random
diffeomorphism if the measure µ× P is invariant under the map S.

Remark. If the random diffeomorphism defines a Markov process, the sta-
tionary measure µ is a stationary measure of the Markov process.

Example. If every diffeomorphism x → f(x, ω) from ω ∈ Ω preserves a
measure µ, then µ is a automatically a stationary measure.

Example. Let M = T2 = R2/Z2 denote the two-dimensional torus. It is a
group with addition modulo 1 in each coordinate. Given an IID random
map:

fn(x) =

{

x+ α with probability 1/2
x+ β with probability 1/2

.

Each map either rotates the point by the vector α = (α1, α2) or by the
vector β = (β1, β2). The Lebesgue measure on T2 is invariant because
it is invariant for each of the two transformations. If α and β are both
rational vectors, then there are infinitely many ergodic invariant measures.
For example, if α = (3/7, 2/7), β = (1/11, 5/11) then the 77 rectangles
[i/7, (i+ 1)/7]× [j/11, (j + 1)/11] are permuted by both transformations.

Definition. A stationary measure µ of a random diffeomorphism is called
ergodic, if µ × P is an ergodic invariant measure for the map S on (M ×
Ω, µ× P).

Remark. If µ is a stationary invariant measure, one has

µ(A) =

∫

M

P (x,A) dµ

for every Borel set A ∈ A. We have earlier written this as a fixed point
equation for the Markov operator P acting on measures: Pµ = µ. In the
context of random maps, the Markov operator is also called a transfer
operator.

Remark. Ergodicity especially means that the transformation T on the
”base probability space” (Ω,A,P) is ergodic.

Definition. The support of a measure µ is the complement of the open set
of points x for which there is a neighborhood U with µ(U) = 0. It is by
definition a closed set.

The previous example 2) shows that there can be infinitely many ergodic in-
variant measures of a random diffeomorphism. But for smooth IID random
diffeomorphisms, one has only finitely many, if the manifold is compact:
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Theorem 5.7.2 (Finitely many ergodic stationary measures (Doob)). If M
is compact, a smooth IID random diffeomorphism has finitely many ergodic
stationary measures µi. Their supports are mutually disjoint and separated
by open sets.

Proof. (i) Let µ1 and µ2 be two ergodic invariant measures. Denote by Σ1

and Σ2 their support. Assume Σ1 and Σ2 are not disjoint. Then there ex-
ist points xi ∈ Σi and open sets Ui of xi so that the transition probability
P (x1, U2) is positive. This uses the assumption that the transition probabil-
ities have smooth densities. But then µ2(U ×Ω) = 0 and µ2(S(U ×Ω)) > 0
violating the measure preserving property of S.

(ii) Assume there are infinitely many ergodic invariant measures, there
exist at least countably many. We can enumerate them as µ1, µ2, ... Denote
by Σi their supports. Choose a point yi in Σi. The sequence of points
has an accumulation point y ∈ M by compactness of M . This implies
that an arbitrary ǫ-neighborhood U of y intersects with infinitely many Σi.
Again, the smoothness assumption of the transition probabilities P (y, ·)
contradicts with the S invariance of the measures µi having supports Σi.

�

Remark. If µ1, µ2 are stationary probability measures, then λµ1+(1−λ)µ2

is an other stationary probability measure. This theorem implies that the
set of stationary probability measures forms a closed convex simplex with
finitely many corners. It is an example of a Choquet simplex.

5.8 Circular random variables

Definition. A measurable function from a probability space (Ω,A,P) to
the circle (T,B) with Borel σ-algebra B is is called a circle-valued random
variable. It is an example of a directional random variable. We can realize
the circle as T = [−π, π) or T = [0, 2π) = R/(2πZ).

Example. If (Ω,A,P) = (R,A, e−x2/2/
√
2πdx, then X(x) = x mod 2π is a

circle-valued random variable. In general, for any real-valued random vari-
able Y , the random variable X(x) = X mod 2π is a circle-valued random
variable.

Example. For a positive integer k, the first significant digit is X(k) =
2π log10(k) mod 1. It is a circle-valued random variable on every finite
probability space (Ω = {1, . . . , n },A,P[{k}] = 1/n).
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Example. A dice takes values in 0, 1, 2, 3, 4, 5 (count 6 = 0). We roll it two
times, but instead of adding up the results X and Y , we add them up
modulo 6. For example, if X = 4 and Y = 3, then X + Y = 1. Note that
E[X + Y ] = E[X ] 6= E[X ] + E[Y ]. Even if X is an unfair dice and if Y is
fair, then X + Y is a fair dice.

Definition. The law of a circular random variable X is the push-forward
measure µ = X∗P on the circle T. If the law is absolutely continuous, it
has a probability density function fX on the circle and µ = fX(x)dx. As
on the real line the Lebesgue decomposition theorem (2.12.2) assures that
every measure on the circle can be decomposed µ = µpp+µac+µsc, where
µpp is (pp), µsc is (sc) and µac is (ac).

Example. The law of the wrapped normal distribution in the first example
is a measure on the circle with a smooth density

fX(x) =

∞
∑

k=−∞
e−(x+2πk)2/2/

√
2π .

It is an example of a wrapped normal distribution.

Example. The law of the first significant digit random variable Xn(k) =
2π log10(k) mod 1 defined on {1, . . . , n } is a discrete measure, supported
on {k2π/10|0 ≤ k < 10 }. It is an example of a lattice distribution.

Definition. The entropy of a circle-valued random variable X with prob-

ability density function fX is defined as H(f) = −
∫ 2π

0 f(x) log(f(x)) dx.
The relative entropy for two densities is defined as

H(f |g) =
∫ 2π

0

f(x) log(f(x)/g(x)) dx .

The Gibbs inequality lemma (2.15.1) assures that H(f |g) ≥ 0 and that
H(f |g) = 0, if f = g almost everywhere.

Definition. The mean direction m and resultant length ρ of a circular
random variable taking values in {|z| = 1} ⊂ C are defined as

ρeim = E[eiX ] .

One can write ρ = E[cos(X − m)]. The circular variance is defined as
V = 1 − ρ = E[1 − cos(X − m)] = E[(X − m)2/2 − (X − m)4/4! . . . ].
The later expansion shows the relation with the variance in the case of
real-valued random variables. The circular variance is a number in [0, 1]. If
ρ = 0, there is no distinguished mean direction. We define m = 0 just to
have one in that case.
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Example. If the distribution of X is located a single point x0, then ρ =
1,m = x0 and V = 0. If the distribution of X is the uniform distribution
on the circle, then ρ = 0, V = 1. There is no particular mean direction in
this case. For the wrapped normal distribution m = 0, ρ = e−σ

2/2, V =
1− e−σ

2/2.

The following lemma is analogous to theorem (2.5.5):

Theorem 5.8.1 (Chebychev inequality on the circle). If X is a circular
random variable with circular mean m and variance V , then

P[| sin((X −m)/2)| ≥ ǫ] ≤ V

2ǫ2
.

Proof. We can assume without loss of generality that m = 0, otherwise
replace X with X −m which does not change the variance. We take T =
[−π, π). We use the trigonometric identity 1− cos(x) = 2 sin2(x/2), to get

V = E[1− cos(X)] = 2E[sin2(
X

2
)]

≥ 2E[1| sin(X
2 )|≥ǫ sin(

X

2
)]

≥ 2ǫ2P[| sin(X
2
)| ≥ ǫ ] .

�

Example. Let X be the random variable which has a discrete distribution
with a law supported on the two points x = x0 = 0 and x = x± =
±2 arcsin(ǫ) and P[X = x0] = 1− V/(2ǫ2) and P[X = x±] = V/(4ǫ2). This
distribution has the circular mean m and the variance V . The equality

P[| sin(X/2)| ≥ ǫ] = 2V/(4ǫ2) = V/(2ǫ2) .

shows that the Chebychev inequality on the circle is ”sharp”: one can not
improve it without further assumptions on the distribution.

Definition. A sequence of circle-valued random variables Xn converges
weakly to a circle-valued random variable X if the law of Xn converges
weakly to the law of X . As with real valued random variables weak con-
vergence is also called convergence by law.

Example. The sequence Xn of significant digit random variables Xn con-
verges weakly to a random variable with lattice distribution P[X = k] =
log10(k + 1) − log10(k) supported on {k2π/10 | 0 ≤ k < 10 }. It is called
the distribution of the first significant digit. The interpretation is that if
you take a large random number, then the probability that the first digit
is 1 is log(2), the probability that the first digit is 6 is log(7/6). The law is
also called Benford’s law.
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Definition. The characteristic function of a circle-valued random variable
X is the Fourier transform φX = ν̂ of the law of X . It is a sequence (that
is a function on Z) given by

φX(n) = E[einX ] =

∫

T

einx dνX(x) .

Definition. More generally, the characteristic function of a Td-valued ran-
dom variable (circle-valued random vector) is the Fourier transform of the
law of X . It is a function on Zd given by

φX(n) = E[ein·X ] =

∫

Td

ein·x dνX(x) .

The following lemma is analog to corollary (2.17).

Lemma 5.8.2. A sequence Xn of circle-valued random variables converges
in law to a circle-valued random variable X if and only if for every integer
k, one has φXn(k) → φX(k) for n→ ∞.

Example. A circle valued random variable with probability density function
f(x) = Ceκ cos(x−α) is called the Mises distribution. It is also called the
circular normal distribution. The constant C is 1/(2πI0(κ)), where I0(κ) =
∑∞

n=0(κ/2)
2n/(n!2) a modified Bessel function. The parameter κ is called

the concentration parameter, the parameter α is called the mean direction.
For κ → 0, the Mises distribution approaches the uniform distribution on
the circle.
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Figure. The density function of
the Mises distribution on [−π, π].

Figure. The density function of
the Mises distribution plotted as a
polar graph.
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Proposition 5.8.3. The Mises distribution maximizes the entropy among all
circular distributions with fixed mean α and circular variance V .

Proof. If g is the density of the Mises distribution, then log(g) = κ cos(x−
α) + log(C) and H(g) = κρ+ 2π log(C).
Now compute the relative entropy

0 ≥ H(f |g) =
∫

f(x) log(f(x))dx −
∫

f(x) log(g(x))dx .

This means with the resultant length ρ of f and g:

H(f) ≥ −E[κ cos(x− α) + log(C)] = −κρ+ 2π log(C) = H(g) .

�

Definition. A circle-valued random variable with probability density func-
tion

f(x) =
1√
2πσ2

∞
∑

k=−∞
e−(x−α−2kπ)22σ2

is the wrapped normal distribution. It is obtained by taking the normal
distribution and wrapping it around the circle: if X is a normal distribu-
tion with mean α and variance σ2, then X mod 1 is the wrapped normal
distribution with those parameters.

Example. A circle-valued random variable with constant density is called
a random variable with the uniform distribution.

Example. A circle-valued random variable with values in a closed finite
subgroup H of the circle is called a lattice distribution. For example, the
random variable which takes the value 0 with probability 1/2, the value
2π/3 with probability 1/4 and the value 4π/3 with probability 1/4 is an
example of a lattice distribution. The group H is the finite cyclic group Z3.

Remark. Why do we bother with new terminology and not just look at real-
valued random variables taking values in [0, 2π)? The reason to change the
language is that there is a natural addition of angles given by rotations.
Also, any modeling by vector-valued random variables is kind of arbitrary.
An advantage is also that the characteristic function is now a sequence and
no more a function.

Distribution Parameter characteristic function

point x0 φX(k) = eikx0

uniform φX(k) = 0 for k 6= 0 and φX(0) = 1
Mises κ, α = 0 Ik(κ)/I0(κ)

wrapped normal σ, α = 0 e−k
2σ2/2 = ρk

2
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The functions Ik(κ) are modified Bessel functions of the first kind of k’th
order.

Definition. If X1, X2, . . . is a sequence of circle-valued random variables,
define Sn = X1 + · · ·+Xn.

Theorem 5.8.4 (Central limit theorem for circle-valued random variable).
The sum Sn of IID-valued circle-valued random variables Xi which do
not have a lattice distribution converges in distribution to the uniform
distribution.

Proof. We have |φX(k)| < 1 for all k 6= 0 because if φX(k) = 1 for some
k 6= 0, then X has a lattice distribution. Because φSn(k) =

∏n
k=1 φXi(k),

all Fourier coefficients φSn(k) converge to 0 for n→ ∞ for k 6= 0. �

Remark. The IID property can be weakened. The Fourier coefficients

φXn(k) = 1− ank

should have the property that
∑∞
n=1 ank diverges, for all k, because then,

∏∞
n=1(1 − ank) → 0. If Xi converges in law to a lattice distribution, then

there is a subsequence, for which the central limit theorem does not hold.

Remark. Every Fourier mode goes to zero exponentially. If φX(k) ≤ 1− δ
for δ > 0 and all k 6= 0, then the convergence in the central limit theorem
is exponentially fast.

Remark. Naturally, the usual central limit theorem still applies if one con-
siders a circle-valued random variable as a random variable taking values in
[−π, π] Because the classical central limit theorem shows that

∑n
i=1Xn/

√
n

converges weakly to a normal distribution,
∑n

i=1Xn/
√
n mod 1 converges

to the wrapped normal distribution. Note that such a restatement of the
central limit theorem is not natural in the context of circular random vari-
ables because it assumes the circle to be embedded in a particular way in
the real line and also because the operation of dividing by n is not natural
on the circle. It uses the field structure of the cover R.

Example. Circle-valued random variables appear as magnetic fields in math-
ematical physics. Assume the plane is partitioned into squares [j, j + 1)×
[k, k+1) called plaquettes. We can attach IID random variables Bjk = eiXjk

on each plaquette. The total magnetic field in a region G is the product of
all the magnetic fields Bjk in the region:

∏

(j,k)∈G
Bjk = e

∑
j,k∈GXjk .

The central limit theorem assures that the total magnetic field distribution
in a large region is close to a uniform distribution.
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Example. Consider standard Brownian motion Bt on the real line and its
graph of {(t, Bt) | t ∈ R } in the plane. The circle-valued random variables
Xn = Bn mod 1 gives the distance of the graph at time t = n to the
next lattice point below the graph. The distribution of Xn is the wrapped
normal distribution with parameter m = 0 and σ = n.

Figure. The graph of one-
dimensional Brownian motion
with a grid. The stochastic pro-
cess produces a circle-valued ran-
dom variable Xn = Bn mod 1.

If X,Y are real-valued IID random variables, thenX+Y is not independent
of X . Indeed X + Y and Y are positively correlated because

Cov[X + Y, Y ] = Cov[X,Y ] + Cov[Y, Y ] = Cov[Y, Y ] = Var[Y ] > 0 .

The situation changes for circle-valued random variables. The sum of two
independent random variables can be independent to the first random vari-
able. Adding a random variable with uniform distribution immediately ren-
ders the sum uniform:

Theorem 5.8.5 (Stability of the uniform distribution). If X,Y are circle-
valued random variables. Assume that Y has the uniform distribution and
that X,Y are independent, then X + Y is independent of X and has the
uniform distribution.

Proof. We have to show that the event A = {X + Y ∈ [c, d] } is indepen-
dent of the event B = {X ∈ [a, b] }. To do so we calculate P[A ∩ B] =
∫ b

a

∫ d−x
c−x fX(x)fY (y) dydx. Because Y has the uniform distribution, we get

after a substitution u = y − x,

∫ b

a

∫ d−x

c−x
fX(x)fY (y) dydx =

∫ b

a

∫ d

c

fX(x)fY (u) dudx = P[A]P[B] .

By looking at the characteristic function φX+Y = φXφY = φX , we see that
X + Y has the uniform distribution. �
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The interpretation of this lemma is that adding a uniform random noise to
a given uniform distribution makes it uniform.

On the n-dimensional torus Td, the uniform distribution plays the role of
the normal distribution as the following central limit theorem shows:

Theorem 5.8.6 (Central limit theorem for circular random vectors). The
sum Sn of IID-valued circle-valued random vectors X converges in distri-
bution to the uniform distribution on a closed subgroup H of G.

Proof. Again |φX(k)| ≤ 1. Let Λ denote the set of k such that φX(k) = 1.

(i) Λ is a lattice. If
∫

eikX(x) dx = 1 then X(x)k = 1 for all x. If λ, λ2 are
in Λ, then λ1 + λ2 ∈ Λ.

(ii) The random variable takes values in a group H which is the dual group
of Zd/H .

(iii) Because φSn(k) =
∏n
k=1 φXi (k), all Fourier coefficients φSn(k) which

are not 1 converge to 0.

(iv) φSn(k) → 1Λ, which is the characteristic function of the uniform dis-
tribution on H . �

Example. If G = T2 and Λ = {. . . , (−1, 0), (1, 0), (2, 0), . . . }, then the ran-
dom variable X takes values in H = {(0, y) | y ∈ T1 }, a one dimensional
circle and there is no smaller subgroup. The limiting distribution is the
uniform distribution on that circle.

Remark. If X is a random variable with an absolutely continuous distribu-
tion on Td, then the distribution of Sn converges to the uniform distribution
on Td.

Exercise. Let Y be a real-valued random variable which has standard
normal distribution. Then X(x) = Y (x) mod 1 is a circle-valued ran-
dom variable. If Yi are IID normal distributed random variables, then
Sn = Y1 + · · · + Yn mod 1 are circle-valued random variable. What is
Cov[Sn, Sm]?

The central limit theorem applies to all compact Abelian groups. Here is
the setup:
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Definition. A topological group G is a group with a topology so that addi-
tion on this group is a continuous map from G×G→ G and such that the
inverse x → x−1 from G to G is continuous. If the group acts transitively
as transformations on a space H , the space H is called a homogeneous
space. In this case, H can be identified with G/Gx, where Gx is the isotopy
subgroup of G consisting of all elements which fix a point x.

Example. Any finite group G with the discrete topology d(x, y) = 1 if x 6= y
and d(x, y) = 0 if x = y is a topological group.

Example. The real line R with addition or more generally, the Euclidean
space Rd with addition are topological groups when the usual Euclidean
distance is the topology.

Example. The circle T with addition or more generally, the torus Td with
addition is a topological group with addition. It is an example of a compact
Abelian topological group.

Example. The general linear group G = Gl(n,R) with matrix multiplica-
tion is a topological group if the topology is the topology inherited as a sub-
set of the Euclidean space Rn

2

of n×n matrices. Also subgroup of Gl(n,R),
like the special linear group SL(n,R) of matrices with determinant 1 or
the rotation group SO(n,R) of orthogonal matrices are topological groups.
The rotation group has the sphere Sn as a homogeneous space.

Definition. A measurable function from a probability space (Ω,A,P) to
a topological group (G,B) with Borel σ-algebra B is is called a G-valued
random variable.

Definition. The law of a spherical random variable X is the push-forward
measure µ = X∗P on G.

Example. If (G,A,P) is a the probability space by taking a compact topo-
logical group G with a group invariant distance d, a Borel σ-algebra A and
the Haar measure P, then X(x) = x is a group valued random variable.
The law of X is called the uniform distribution on G.

Definition. A measurable function from a probability space (Ω,A,P) to the
group (G,B) is called a G-valued random variable. A measurable function
to a homogeneous space is called H-valued random variable. Especially,
if H is the d-dimensional sphere (Sd,B) with Borel probability measure,
then X is called a spherical random variable. It is used to describe spherical
data.

5.9 Lattice points near Brownian paths

The following law of large numbers deals with sums Sn of n random vari-
ables, where the law of random variables depends on n.
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Theorem 5.9.1 (Law of large numbers for random variables with shrinking
support). IfXi are IID random variables with uniform distribution on [0, 1].
Then for any 0 ≤ δ < 1, and An = [0, 1/nδ], we have

lim
n→∞

1

n1−δ

n
∑

k=1

1An(Xk) → 1

in probability. For δ < 1/2, we have almost everywhere convergence.

Proof. For fixed n, the random variables Zk(x) = 1[0,1/nδ](Xk) are indepen-

dent, identically distributed random variables with mean E[Zk] = p = 1/nδ

and variance p(1− p). The sum Sn =
∑n
k=1Xk has a binomial distribution

with mean np = n1−δ and variance Var[Sn] = np(1 − p) = n1−δ(1 − p).
Note that if n changes, then the random variables in the sum Sn change
too, so that we can not invoke the law of large numbers directly. But the
tools for the proof of the law of large numbers still work.

For fixed ǫ > 0 and n, the set

Bn = {x ∈ [0, 1] | |Sn(x)
n1−δ − 1| > ǫ }

has by the Chebychev inequality (2.5.5), the measure

P[Bn] ≤ Var[
Sn
n1−δ ]/ǫ

2 =
Var[Sn]

n2−2δǫ2
=

1− p

ǫ2n1−δ ≤ 1

ǫ2n1−δ .

This proves convergence in probability and the weak law version for all
δ < 1 follows.

In order to apply the Borel-Cantelli lemma (2.2.2), we need to take a sub-
sequence so that

∑∞
k=1 P[Bnk

] converges. Like this, we establish complete
convergence which implies almost everywhere convergence.

Take κ = 2 with κ(1 − δ) > 1 and define nk = kκ = k2. The event B =
lim supk Bnk

has measure zero. This is the event that we are in infinitely
many of the sets Bnk

. Consequently, for large enough k, we are in none of
the sets Bnk

: if x ∈ B, then

|Snk
(x)

n1−δ
k

− 1| ≤ ǫ

for large enough k. Therefore,

|Snk+l(x)

n1−δ
k

− 1| ≤ |Snk
(x)

n1−δ
k

− 1|+ Sl(T
n
k (x))

n1−δ
k

.
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Because for nk = k2 we have nk+1 − nk = 2k + 1 and

Sl(T
n
k (x))

n1−δ
k

≤ 2k + 1

k2(1−δ)
.

For δ < 1/2, this goes to zero assuring that we have not only convergence
of the sum along a subsequence Snk

but for Sn (compare lemma (2.11.2)).

We know now |Sn(x)
n1−δ − 1| → 0 almost everywhere for n→ ∞. �

Remark. If we sum up independent random variables Zk = nδ1[0,1/nδ](Xk)

where Xk are IID random variables, the moments E[Zmk ] = n(m−1)δ be-
come infinite for m ≥ 2. The laws of large numbers do not apply be-
cause E[Z2

k] depends on n and diverges for n → ∞. We also change the
random variables, when taking larger sums. For example, the assumption
supn

1
n

∑n
i=1 Var[Xi] <∞ does not apply.

Remark. We could not conclude the proof in the same way as in theo-
rem (2.9.3) because Un =

∑n
k=1 Zk is not monotonically increasing. For

δ ∈ [1/2, 1) we have only proven a weak law of large numbers. It seems
however that a strong law should work for all δ < 1.

Here is an application of this theorem in random geometry.

Corollary 5.9.2. Assume we place randomly n discs of radius r = 1/n1/2−δ/2

onto the plane. Their total area without overlap is πnr2 = πnδ. If Sn is the
number of lattice points hit by the discs, then for δ < 1/2

Sn
nδ

→ π .

almost surely.

Figure. Throwing randomly
discs onto the plane and count-
ing the number of lattice points
which are hit. The size of the
discs depends on the number of
discs on the plane. If δ = 1/3
and if n = 1′000′000, then we
have discs of radius 1/10000
and we expect Sn, the number of
lattice point hits, to be 100π.
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Remark. Similarly as with the Buffon needle problem mentioned in the in-
troduction, we can get a limit. But unlike the Buffon needle problem, where
we keep the setup the same, independent of the number of experiments. We
adapt the experiment depending on the number of tries. If we make a large
number of experiments, we take a small radius of the disk. The case δ = 0
is the trivial case, where the radius of the disc stays the same.

The proof of theorem (5.9.1) shows that the assumption of independence
can be weakened. It is enough to have asymptotically exponentially decor-
related random variables.

Definition. A measure preserving transformation T of [0, 1] has decay of
correlations for a random variable X satisfying E[X ] = 0, if

Cov[X,X(T n)] → 0

for n→ ∞. If

Cov[X,X(T n)] ≤ e−Cn

for some constant C > 0, then X has exponential decay of correlations.

Lemma 5.9.3. If Bt is standard Brownian motion. Then the random vari-
ables Xn = Bn mod 1 have exponential decay of correlations.

Proof. Bn has the standard normal distribution with mean 0 and standard
deviation σ = n. The random variableXn is a circle-valued random variable
with wrapped normal distribution with parameter σ = n. Its characteris-
tic function is φX(k) = e−k

2σ2/2. We have Xn+m = Xn + Ym mod 1,
where Xn and Ym are independent circle-valued random variables. Let
gn =

∑∞
k=0 e

−k2n2/2 cos(kx) = 1 − ǫ(x) ≥ 1 − e−Cn
2

be the density of Xn

which is also the density of Yn. We want to know the correlation between
Xn+m and Xn:

∫ 1

0

∫ 1

0

f(x)f(x+ y)g(x)g(y) dy dx .

With u = x+ y, this is equal to

∫ 1

0

∫ 1

0

f(x)f(u)g(x)g(u − x) dudx

=

∫ 1

0

∫ 1

0

f(x)f(u)(1 − ǫ(x))(1 − ǫ(u− x)) dudx

≤ C1|f |2∞e−Cn
2

.

�
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Proposition 5.9.4. If T : [0, 1] → [0, 1] is a measure-preserving transfor-
mation which has exponential decay of correlations for Xj . Then for any
δ ∈ [0, 1/2), and An = [0, 1/nδ], we have

lim
n→∞

1

n1−δ

n
∑

k=1

1An(T
k(x)) → 1 .

Proof. The same proof works. The decorrelation assumption implies that
there exists a constant C such that

∑

i6=j≤n
Cov[Xi, Xj ] ≤ C .

Therefore,

Var[Sn] = nVar[Xn] +
∑

i6=j≤n
Cov[Xi, Xj ] ≤ C1|f |2∞

∑

i,j≤n
e−C(i−j)2 .

The sum converges and so Var[Sn] = nVar[Xi] + C. �

Remark. The assumption that the probability space Ω is the interval [0, 1] is
not crucial. Many probability spaces (Ω,A,P) where Ω is a compact metric
space with Borel σ-algebra A and P[{x}] = 0 for all x ∈ Ω is measure
theoretically isomorphic to ([0, 1],B, dx), where B is the Borel σ-algebra
on [0, 1] (see [12] proposition (2.17). The same remark also shows that
the assumption An = [0, 1/nδ] is not essential. One can take any nested
sequence of sets An ∈ A with P[An] = 1/nδ, and An+1 ⊂ An.

Figure. We can apply this propo-
sition to a lattice point prob-
lem near the graphs of one-
dimensional Brownian motion,
where we have a probability space
of paths and where we can make
a statement about almost every
path in that space. This is a re-
sult in the geometry of numbers
for connected sets with fractal
boundary.
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Corollary 5.9.5. Assume Bt is standard Brownian motion. For any 0 ≤ δ <
1/2, there exists a constant C, such that any 1/n1+δ neighborhood of the
graph of B over [0, 1] contains at least C/n1−δ lattice points, if the lattice
has a minimal spacing distance of 1/n.

Proof. Bt+1/n mod 1/n is not independent of Bt but the Poincaré return
map T from time t = k/n to time (k + 1)/n is a Markov process from
[0, 1/n] to [0, 1/n] with transition probabilities. The random variables Xi

have exponential decay of correlations as we have seen in lemma (5.9.3). �

Remark. A similar result can be shown for other dynamical systems with
strong recurrence properties. It holds for example for irrational rotations
with T (x) = x + α mod 1 with Diophantine α, while it does not hold for
Liouville α. For any irrational α, we have fn = 1

n1−δ

∑n
k=1 1An(T

k(x)) near
1 for arbitrary large n = ql, where pl/ql is the periodic approximation of
δ. However, if the ql are sufficiently far apart, there are arbitrary large n,
where fn is bounded away from 1 and where fn do not converge to 1.

The theorem we have proved above belongs to the research area of geome-
try of numbers. Mixed with probability theory it is a result in the random
geometry of numbers.

A prototype of many results in the geometry of numbers is Minkowski’s
theorem:

Theorem 5.9.6 (Minkowski theorem). A convex set M which is invariant
under the map T (x) = −x and with area > 4 contains a lattice point
different from the origin.

Proof. One can translate all points of the set M back to the square Ω =
[−1, 1] × [−1, 1]. Because the area is > 4, there are two different points
(x, y), (a, b) which have the same identification in the square Ω. But if
(x, y) = (u+2k, v+2l) then (x−u, y−v) = (2k, 2l). By point symmetry also
(a, b) = (−u,−v) is in the setM . By convexity ((x+a)/2, (y+b)/2) = (k, l)
is in M . This is the lattice point we were looking for. �
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Figure. A convex, symmetric set
M . For illustration purposes, the
area has been chosen smaller
than 4 in this picture. The theo-
rem of Minkowski assumes, it is
larger than 4.

Figure. Translate all points back
to the square [−1, 1] × [−1, 1] of
area 4. One obtains overlapping
points. The symmetry and con-
vexity allows to conclude the ex-
istence of a lattice point in M .

There are also open questions:

• The Gauss circle problem asks to estimate the number of 1/n-lattice
points g(n) = πn2+E(n) enclosed in the unit disk. One believes that
an estimate E(n) ≤ Cnθ holds for every θ > 1/2. The smallest θ for
which one knows the is θ = 46/73.

• For a smooth curve of length 1 which is not a line, we have a similar
result as for the random walk but we need δ < 1/3. Is there a result
for δ < 1?

• If we look at Brownian motion in Rd. How many 1/n lattice points
are there in a Wiener sausage, in a 1/n1+δ neighborhood of the path?

5.10 Arithmetic random variables

Because large numbers are virtually infinite - we have no possibility to in-
spect all of of the numbers from Ωn = {1, . . . n = 10100} for example -
functions like Xn = k2+5 mod n are accessible on a small subset only. The
function Xn behaves as random variable on an infinite probability space. If
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we could find the events Un = {Xn = 0 } easily, then factorization would
be easy as its factors can be determined from in Un. A finite but large
probability space Ωn can be explored statistically and the question is how
much information we can draw from a small number of data. It is unknown
how much information can we get from a large integer n with finitely many
computations. Can we statistically recover the factors of n from O(log(n))
data points (kj , xj), where xj = n mod kj for example?

As an illustration of how arithmetic complexity meets randomness, we con-
sider in this section examples of number theoretical random variables, which
can be computed with a fixed number of arithmetic operations. Both have
the property that they appear to be ”random” for large n. These functions
belong to a class of random variables

X(k) = p(k, n) mod q(k, n) ,

where p and q are polynomials in two variables. For these functions, the
sets X−1(a) = {X(k) = a } are in general difficult to compute and
Y0(k) = X(k), Y1(k) = X(k + 1), . . . , Yl(k) = X(k + l) behave very much
as independent random variables.

To deal with ”number theoretical randomness”, we use the notion of asymp-
totically independence. Asymptotically independent random variables ap-
proximate independent random variables in the limit n → ∞. With this
notion, we can study fixed sequences or deterministic arithmetic functions
on finite probability spaces with the language of probability, even so there is
no fixed probability space on which the sequences form a stochastic process.

Definition. A sequence of number theoretical random variables is a col-
lection of integer valued random variables Xn defined on finite probability
spaces (Ωn,An,Pn) for which Ωn ⊂ Ωn+1 and An is the set of all subsets
of Ωn. An example is a sequence Xn of integer valued functions defined
on Ωn = {0, . . . , n − 1 }. If there exists a constant C such that Xn on
{0, . . . , n } is computable with a total of less than C additions, multiplica-
tions, comparisons, greatest common divisor and modular operations, we
call X a sequence of arithmetic random variables.

Example. For example

Xn(x) =
(

((x5 − 7) mod 9)3x− x2
)

mod n

defines a sequence of arithmetic random variables on Ωn = {0, . . . , n− 1 }.
Example. If xn is a fixed integer sequence, then Xn(k) = xk on Ωn =
{0, . . . , n − 1 } is a sequence of number theoretical random variables. For
example, the digits xn of the decimal sequence of π defines a sequence
of number theoretical random variables Xn(k) = xn for k ≤ n. However,
in the case of π, it is not known, whether this sequence is an arithmetic
sequence. It would be a surprise, if one could compute xn with a finite n-
independent number of basic operations. Also other deterministic sequences
like the decimal expansions of π,

√
2 or the Möbius function µ(n) appear

”random”.
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Remark. Unlike for discrete time stochastic processes Xn, where all ran-
dom variables Xn are defined on a fixed probability space (Ω,A,P), an
arithmetic sequence of random variables Xn uses different finite probabil-
ity spaces (Ωn,An,Pn).

Remark. Arithmetic functions are a subset of the complexity class P of
functions computable in polynomial time. The class of arithmetic sequences
of random variables is expected to be much smaller than the class of se-
quences of all number theoretical random variables. Because computing
gcd(x, y) needs less than C(x + y) basic operations, we have included it
too in the definition of arithmetic random variable.

Definition. If limn→∞ E[Xn] exists, then it is called the asymptotic expec-
tation of a sequence of arithmetic random variables. If limn→∞ Var[Xn]
exists, it is called the asymptotic variance. If the law of Xn converges, the
limiting law is called the asymptotic law.

Example. On the probability space Ωn = [1, . . . , n]×[1, . . . , n], consider the
arithmetic random variables Xd = 1Sd

, where Sd = {(n,m), gcd(n,m) =
d }.

Proposition 5.10.1. The asymptotic expectation Pn[S1] = En[X1] is 6/π
2.

In other words, the probability that two random integers are relatively
prime is 6/π2.

Proof. Because there is a bijection φ between S1 on [1, . . . , n]2 and Sd on
[1, . . . , dn]2 realized by φ(j, k) → (dj, dk), we have |S1|/n2 = |Sd|/(d2n2).
This shows that En[X1]/En[Xd] → d2 has a limit 1/d2 for n → ∞. To
know P[S1], we note that the sets Sd form a partition of N2 and also when
restricted to Ωn. Because P[Sd] = P [S1]/d

2, one has

P[S1] · (
1

12
+

1

22
+

1

32
+ . . . ) = P[S1]

π2

6
= 1 ,

so that P[S1] = 6/π2. �
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Figure. The probability that two
random integers are relatively
prime is 6/π2. A cell (j, k)
in the finite probability space
[1, . . . , n] × [1, . . . , n] is painted
black if gcd(j, k) = 1. The proba-
bility that gcd(j, k) = 1 is 6/π2 =
0.607927 . . . in the limit n→ ∞.
So, if you pick two large num-
bers (j, k) at random, the change
to have no common divisor is
slightly larger than to have a
common divisor.

Exercise. Show that the asymptotic expectation of the arithmetic random
variable Xn(x, y) = gcd(x, y) on [1, . . . , n]2 is infinite.

Example. A large class of arithmetic random variables is defined by

Xn(k) = p(n, k) mod q(n, k)

on Ωn = {0, . . . , n− 1 } where p and q are not simultaneously linear poly-
nomials. We will look more closely at the following two examples:

1) Xn(k) = n2 + c mod k
2) Xn(k) = k2 + c mod n

Definition. Two sequences Xn, Yn of arithmetic random variables, (where
Xn, Yn are defined on the same probability spaces Ωn), are called uncor-
related if Cov[Xn, Yn] = 0. The are called asymptotically uncorrelated, if
their asymptotic correlation is zero:

Cov[Xn, Yn] → 0

for n→ ∞.

Definition. Two sequences X,Y of arithmetic random variables are called
independent if for every n, the random variables Xn, Yn are independent.
Two sequences X,Y of arithmetic random variables with values in [0, n]
are called asymptotically independent, if for all I, J , we have

P[
Xn

n
∈ I,

Yn
n

∈ J ]− P[
Xn

n
∈ I] P[

Yn
n

∈ J ] → 0

for n→ ∞.
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Remark. If there exist two uncorrelated sequences of arithmetic random
variables U, V such that ||Un −Xn||L2(Ωn) → 0 and ||Vn − Yn||L2(Ωn) → 0,
then X,Y are asymptotically uncorrelated. If the same is true for indepen-
dent sequences U, V of arithmetic random variables, then X,Y are asymp-
totically independent.

Remark. If two random variables are asymptotically independent, they are
asymptotically uncorrelated.

Example. Two arithmetic random variablesXn(k) = k mod n and Yn(k) =
ak+b mod n are not asymptotic independent. Lets look at the distribution
of the random vector (Xn, Yn) in an example:

Figure. The figure shows
the points (Xn(k), Yn(k)) for
Xn(k) = k, Yn(k) = 5k + 3
modulo n in the case n = 2000.
There is a clear correlation be-
tween the two random variables.

Exercise. Find the correlation of Xn(k) = k mod n and Yn(k) = 5k +
3 mod n.

Having asymptotic correlations between sequences of arithmetic random
variables is rather exceptional. Most of the time, we observe asymptotic
independence. Here are some examples:

Example. Consider the two arithmetic variables Xn(k) = k and

Yn(k) = ck−1 mod p(n) ,

where c is a constant and p(n) is the n’th prime number. The random
variables Xn and Yn are asymptotically independent. Proof: by a lemma of
Merel [68, 22], the number of solutions of (x, y) ∈ I × J of xy = c mod p is

|I||J |
p

+O(p1/2 log2(p)) .

This means that the probability that Xn/n ∈ In, Yn/n ∈ Jn is |In| · |Jn|.



346 Chapter 5. Selected Topics

Figure. Illustration of the lemma
of Merel. The picture shows the
points {(k, 1/k) mod p }, where
p is the 200’th prime number
p(200) = 1223.

Nonlinear polynomial arithmetic random variables lead in general to asymp-
totic independence. Lets start with an experiment:

Figure. We see the points
(Xn(k), Yn(k)) for Xn(k) =
k, Yn(k) = k2 + 3 in the case
n = 2001. Even so there are
narrow regions in which some
correlations are visible, these
regions become smaller and
smaller for n → ∞. Indeed, we
will show that Xn, Yn are asymp-
totically independent random
variables.

The random variable Xn(k) = (n2 + c) mod k on {1, . . . , n} is equivalent
to Xn(k) = n mod k on {0, . . . , [√n− c] }, where [x] is the integer part of
x. After the rescaling the sequence of random variables is easier to analyze.

To study the distribution of the arithmetic random variable Xn, we can
also rescale the image, so that the range in the interval [0, 1]. The random
variable Yn = Xn(x · |Ωn|) can be extended from the discrete set {k/|Ωn|)}
to the interval [0, 1]. Therefore, instead of n2 + c mod k, we look at

Xn(k) =
n mod k

k
=
n

k
− [

n

k
]

on Ωm(n) = {1, . . . ,m(n) }, where m(n) =
√
n− c.

Elements in the set X−1(0) are the integer factors of n. Because factoring is
a well studied NP type problem, the multi-valued function X−1 is probably
hard to compute in general because if we could compute it fast, we could
factor integers fast.
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Proposition 5.10.2. The rescaled arithmetic random variables

Xn(k) =
n mod k

k
=
n

k
− [

n

k
]

converge in law to the uniform distribution on [0, 1].

Proof. The functions f rn(k) = n/(k+r)−[n/(k+r)] are piecewise continuous
circle maps on [0, 1]. When rescaling the argument [0, . . . , n], the slope of
the graph becomes larger and larger for n→ ∞. We can use lemma (5.10.3)
below. �

Figure. Data points

(k,
n mod k

k
)

for n = 10′000 and 1 ≤ k ≤
n. For smaller values of k, the
data points appear random. The
points are located on the graph of
the circle map

fn(t) =
n

t
− [

n

t
] .

To show the asymptotic independence of Xn with any of its translations,
we restrict the random vectors to [1, 1/na] with a < 1.

Lemma 5.10.3. Let fn be a sequence of smooth maps from [0, 1] to the circle
T1 = R/Z for which (f−1

n )′′(x) → 0 uniformly on [0, 1], then the law µn of
the random variables Xn(x) = (x, fn(x)) converges weakly to the Lebesgue
measure µ = dxdy on [0, 1]× T1.

Proof. Fix an interval [a, b] in [0, 1]. Because µn([a, b]×T1) is the Lebesgue
measure of {(x, y) |Xn(x, y) ∈ [a, b]} which is equal to b− a, we only need
to compare

µn([a, b]× [c, c+ dy])

and

µn([a, b]× [d, d+ dy])
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in the limit n → ∞. But µn([a, b] × [c, c + dy]) − µn([a, b] × [c, c + dy]) is
bounded above by

|(f−1
n )′(c)− (f−1

n )′(d)| ≤ |(f−1
n )′′(x)|

which goes to zero by assumption.

Figure. Proof of the lemma. The
measure µn with support on the
graph of fn(x) converges to the
Lebesgue measure on the prod-
uct space [0, 1] × T1. The con-
dition f ′′/f ′2 → 0 assures that
the distribution in the y direction
smooths it out.

a b

c

c+dy

d

d+dy

Theorem 5.10.4. Let c be a fixed integer and Xn(k) = (n2 + c) mod k
on {1, . . . , n} For every integer r > 0, 0 < a < 1, the random variables
X(k), Y (k) = X(k + r) are asymptotically independent and uncorrelated
on [0, na].

Proof. We have to show that the discrete measures
∑na

j=1 δ(X(k), Y (k))
converge weakly to the Lebesgue measure on the torus. To do so, we first

look at the measure µn =
∫ 1

0

∑na

j=1 δ(X(k), Y (k)) which is supported on
the curve t 7→ (X(t), Y (t)), where k ∈ [0, na] with a < 1 converges weakly
to the Lebesgue measure. When rescaled, this curve is the graph of the
circle map fn(x) = 1/x mod 1 The result follows from lemma (5.10.3). �

Remark. Similarly, we could show that the random vectors (X(k), X(k +
r1), X(k + r2), . . . , X(k + rl)) are asymptotically independent.

Remark. Polynomial maps like T (x) = x2 + c are used as pseudo random
number generators for example in the Pollard ρ method for factorization
[86]. In that case, one considers the random variables {0, . . . , n − 1} de-
fined by X0(k) = k, Xn+1(k) = T (Xn(k)). Already one polynomial map
produces randomness asymptotically as n→ ∞.
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Theorem 5.10.5. If p is a polynomial of degree d ≥ 2, then the distribution
of Y (k) = p(k) mod n is asymptotically uniform. The random variables
X(k) = k and Y (k) = p(k) mod n are asymptotically independent and
uncorrelated.

Proof. The map can be extended to a map on the interval [0, n]. The graph
(x, T (x)) in {1, . . . , n}×{1, . . . , n} has a large slope on most of the square.
Again use lemma (5.10.3) for the circle maps fn(x) = p(nx) mod n on
[0, 1]. �

Figure. The slope of the graph
of p(x) mod n becomes larger
and larger as n → ∞. Choos-
ing an integer k ∈ [0, n] pro-
duces essentially a random value
p(k) mod n. To prove the asymp-
totic independence, one has to
verify that in the limit, the push
forward of the Lebesgue measure
on [0, n] under the map f(x) =
(x, p(x)) mod n converges in
law to the Lebesgue measure on
[0, n]2.

Remark. Also here, we deal with random variables which are difficult to
invert: if one could find Y −1(c) in O(P (log(n)) times steps, then factoriza-
tion would be in the complexity class P of tasks which can be computed
in polynomial time. The reason is that taking square roots modulo n is at
least as hard as factoring is the following: if we could find two square roots
x, y of a number modulo n, then x2 = y2 mod n. This would lead to factor
gcd(x − y, n) of n. This fact which had already been known by Fermat. If
factorization was a NP complete problem, then inverting those maps would
be hard.

Remark. The Möbius function is a function on the positive integers defined
as follows: the value of µ(n) is defined as 0, if n has a factor p2 with a prime p
and is (−1)k, if it contains k distinct prime factors. For example, µ(14) = 1
and µ(18) = 0 and µ(30) = −1. The Mertens conjecture claimed hat

M(n) = |µ(1) + · · ·+ µ(n)| ≤ C
√
n

for some constant C. It is now believed thatM(n)/
√
n is unbounded but it

is hard to explore this numerically, because the
√

log log(n) bound in the
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law of iterated logarithm is small for the integers n we are able to compute
- for example for n = 10100, one has

√

log log(n) is less then 8/3. The fact

M(n)

n
=

1

n

n
∑

k=1

µ(k) → 0

is known to be equivalent to the prime number theorem. It is also known
that lim supM(n)/

√
n ≥ 1.06 and lim infM(n)/

√
n ≤ −1.009.

If one restricts the function µ to the finite probability spaces Ωn of all
numbers ≤ n which have no repeated prime factors, one obtains a sequence
of number theoretical random variables Xn, which take values in {−1, 1}.
Is this sequence asymptotically independent? Is the sequence µ(n) random
enough so that the law of the iterated logarithm

lim sup
n→∞

n
∑

k=1

µ(k)
√

2n log log(n)
≤ 1

holds? Nobody knows. The question is probably very hard, because if it
were true, one would have

M(n) ≤ n1/2+ǫ, for all ǫ > 0

which is called the modified Mertens conjecture . This conjecture is known
to be equivalent to the Riemann hypothesis, the probably most notori-
ous unsolved problem in mathematics. In any case, the connection with
the Möbius functions produces a convenient way to formulate the Rie-
mann hypothesis to non-mathematicians (see for example [13]). Actually,
the question about the randomness of µ(n) appeared in classic probability
text books like Fellers. Why would the law of the iterated logarithm for
the Möbius function imply the Riemann hypothesis? Here is a sketch of
the argument: the Euler product formula - sometimes referred to as ”the
Golden key” - says

ζ(s) =

∞
∑

n=1

1

ns
=

∏

p prime

(1− 1

ps
)−1 .

The function ζ(s) in the above formula is called the Riemann zeta function.
With M(n) ≤ n1/2+ǫ, one can conclude from the formula

1

ζ(s)
=

∞
∑

n=1

µ(n)

ns

that ζ(s) could be extended analytically from Re(s) > 1 to any of the
half planes Re(s) > 1/2 + ǫ. This would prevent roots of ζ(s) to be to the
right of the axis Re(s) = 1/2. By a result of Riemann, the function Λ(s) =
π−s/2Γ(s/2)ζ(s) is a meromorphic function with a simple pole at s = 1 and
satisfies the functional equation Λ(s) = Λ(1 − s). This would imply that
ζ(s) has also no nontrivial zeros to the left of the axis Re(s) = 1/2 and
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that the Riemann hypothesis were proven. The upshot is that the Riemann
hypothesis could have aspects which are rooted in probability theory.

Figure. The sequence Xk =
µ(l(k)), where l(k) is the k
nonzero entry in the sequence
{µ(1), µ(2), µ(3), . . . } produces a
”random walk” Sn =

∑n
k=1Xk.

While Xk is a deterministic se-
quence, the behavior of Sn re-
sembles a typical random walk.
If that were true and the law of
the iterated logarithm would hold,
this would imply the Riemann
hypothesis.

10000 20000 30000 40000 50000 60000

-100

-50

50
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5.11 Symmetric Diophantine Equations

Definition. A Diophantine equation is an equation f(x1, . . . , xk) = 0, where
p is a polynomial in k integer variables x1, . . . , xk and where the polynomial
f has integer coefficients. The Diophantine equation has degree m if the
polynomial has degree m. The Diophantine equation is homogeneous, if
every summand in the polynomial has the same degree. A homogeneous
Diophantine equation is also called a form.

Example. The quadratic equation x2 + y2 − z2 = 0 is a homogeneous
Diophantine equation of degree 2. It has many solutions. They are called
Pythagorean triples. One can parameterize them all with two parameters
s, t with x = 2st, y = s2− t2, z = s2+ t2, as has been known since antiquity
already [14].

Definition. A Diophantine equation of the form

p(x1, . . . , xk) = p(y1, . . . , yk)

is called a symmetric Diophantine equation. More generally, a Diophantine
equation

k
∑

i=1

xmi =

l
∑

j=1

xmj

is called an Euler Diophantine equation of type (k, l) and degree m. It is a
symmetric Diophantine equation if k = l. [28, 35, 14, 4, 5]

Remark. An Euler Diophantine equation is equivalent to a symmetric Dio-
phantine equation if m is odd and k + l is even.
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Definition. A solution (x1, .., xk), (y1, . . . , yk) to a symmetric Diophantine
equation p(x) = p(y) is called nontrivial, if {x1, . . . , xk } and {y1, . . . , yk }
are different sets. For example, 53 + 73 + 33 = 33 + 73 + 53 is a trivial
solution of p(x) = p(y) with p(x, y, z) = x3 + y3 + z3.
The following theorem was proved in [69]:

Theorem 5.11.1 (Jaroslaw Wroblewski 2002). For k > m, the Diophantine
equation xm1 + · · · + xmk = ym1 + · · · + ymk has infinitely many nontrivial
solutions.

Proof. Let R be a collection of different integer multi-sets in the finite
set [0, . . . , n]k. It contains at least nk/k! elements. The set S = {p(x) =
xm1 + · · · + xmk ∈ [0,

√
knm/2] | x ∈ R } contains at least nk/k! numbers.

By the pigeon hole principle, there are different multi-sets x, y for which
p(x) = p(y). This is the case if nk/k! >

√
knm or nk−m > k!

√
k. �

The proof generalizes to the case, where p is an arbitrary polynomial of
degree m with integer coefficients in the variables x1, . . . , xk.

Theorem 5.11.2. For an arbitrary polynomial p in k variables of degree
m, the Diophantine equation p(x) = p(y) has infinitely many nontrivial
solutions.

Remark. Already small deviations from the symmetric case leads to local
constraints: for example, 2p(x) = 2p(y)+1 has no solution for any nonzero
polynomial p in k variables because there are no solutions modulo 2.

Remark. It has been realized by Jean-Charles Meyrignac, that the proof
also gives nontrivial solutions to simultaneous equations like p(x) = p(y) =
p(z) etc. again by the pigeon hole principle: there are some slots, where more
than 2 values hit. Hardy and Wright [28] (theorem 412) prove that in the
case k = 2,m = 3: for every r, there are numbers which are representable
as sums of two positive cubes in at least r different ways. No solutions
of x41 + y41 = x42 + y42 = x43 + y43 were known to those authors [28], nor
whether there are infinitely many solutions for general (k,m) = (2,m).
Mahler proved that x3 + y3 + z3 = 1 has infinitely many solutions. It is
believed that x3+y3+z3+w3 = n has solutions for all n. For (k,m) = (2, 3),
multiple solutions lead to so called taxi-cab or Hardy-Ramanujan numbers.

Remark. For general polynomials, the degree and number of variables alone
does not decide about the existence of nontrivial solutions of p(x1, . . . , xk) =
p(y1, . . . , yk). There are symmetric irreducible homogeneous equations with
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k < m/2 for which one has a nontrivial solution. An example is p(x, y) =
x5 − 4y5 which has the nontrivial solution p(1, 3) = p(4, 5).

Definition. The law of a symmetric Diophantine equation p(x1, . . . , xk) =
p(x1, . . . , xk) with domain Ω = [0, . . . , n]k is the law of the random variable
defined on the finite probability space Ω.

Remark. Wroblewski’s theorem holds because the random variable has an
average density which is larger than the lattice spacing of the integers. So,
there have to be different integers, which match. The continuum analog is
that if a random variable X on a domain Ω takes values in [a, b] and b− a
is smaller than the area of Ω, then the density fX is larger than 1 at some
point.

Remark. Wroblewski’s theorem covers cases like x2+y2+z2 = u2+v2+w2

or x3 + y3 + z3 + w3 = a3 + b3 + c3 + d3. It is believed that for k > m/2,
there are infinitely many solutions and no solution for k < m/2. [60].

Remark. For homogeneous Diophantine equations, it is enough to find a
single nontrivial solution (x1, . . . , xk) to obtain infinitely many. The reason
is that (mx1, . . . ,mxk) is a solution too, for any m 6= 0.

Here are examples of solutions. Sources are [70, 35, 14]:

k=2,m=4 (59, 158)4 = (133, 134)4 (Euler, gave algebraic solutions in 1772 and 1778)

k=2,m=5 (open problem ([35]) all sums ≤ 1.02 · 1026 have been tested)

k=3,m=5 (3, 54, 62)5 = (24, 28, 67)5 ([60], two parametric solutions by Moessner 1939, Swinnerton-Dyer)

k=3,m=6 (3, 19, 22)6 = (10, 15, 23)6 ([28],Subba Rao, Bremner and Brudno parametric solutions)

k=3,m=7 open problem?

k=4,m=7 (10, 14, 123, 149)7 = (15, 90, 129, 146)7 (Ekl)

k=4,m=8 open problem?

k=5,m=7 (8, 13, 16, 19)7 = (2, 12, 15, 17, 18)7 ([60])

k=5,m=8 (1, 10, 11, 20, 43)8 = (5, 28, 32, 35, 41)8.

k=5,m=9 (192, 101, 91, 30, 26)9 = (180, 175, 116, 17, 12)9 (Randy Ekl, 1997)

k=5,m=10 open problem

k=6,m=3 (3, 19, 22)6 = (10, 15, 23)6 (Subba Rao [60])

k=6,m=10 (95, 71, 32, 28, 25, 16)10 = (92, 85, 34, 34, 23, 5)10 (Randy Ekl,1997)

k=6,m=11 open problem?

k=7,m=10 (1, 8, 31, 32, 55, 61, 68)10 = (17, 20, 23, 44, 49, 64, 67)10 ([60])

k=7,m=12 (99, 77, 74, 73, 73, 54, 30)12 = (95, 89, 88, 48, 42, 37, 3)12 (Greg Childers, 2000)

k=7,m=13 open problem?

k=8,m=11 (67, 52, 51, 51, 39, 38, 35, 27)11 = (66, 60, 47, 36, 32, 30, 16, 7)11 (Nuutti Kuosa, 1999)

k=20,m=21 (76, 74, 74, 64, 58, 50, 50, 48, 48, 45, 41, 32, 21, 20, 10, 9, 8, 6, 4, 4)21

= (77, 73, 70, 70, 67, 56, 47, 46, 38, 35, 29, 28, 25, 23, 16, 14, 11, 11, 3, 3)21 (Greg Childers, 2000)

k=22,m=22 (85, 79, 78, 72, 68, 63, 61, 61, 60, 55, 43, 42, 41, 38, 36, 34, 30, 28, 24, 12, 11, 11)22

= (83, 82, 77, 77, 76, 71, 66, 65, 65, 58, 58, 54, 54, 51, 49, 48, 47, 26, 17, 14, 8, 6)22 (Greg Childers, 2000)
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Figure. Known cases of (k,m)
with nontrivial solutions ~x, ~y
of symmetric Diophantine equa-
tions g(~x) = g(~y) with g(~x) =
xm1 +· · ·+xmk . Wroblewski’s theo-
rem assures that for k > m, there
are solutions. The points above
the diagonal beat Wroblewski’s
theorem. The steep line m =
2k is believed to be the thresh-
old for the existence of nontrivial
solutions. Above this line, there
should be no solutions, below,
there should be nontrivial solu-
tions.

k

m

What happens in the case k = m? There is no general result known. The
problem has a probabilistic flavor because one can look at the distribution
of random variables in the limit n→ ∞:

Lemma 5.11.3. Given a polynomial p(x1, . . . , xk) with integer coefficients
of degree k. The random variables

Xn(x1, . . . , xk) = p(x1, .., xk)/n
k

on the finite probability spaces Ωn = [0, . . . , n]k converge in law to the
random variable X(x1, . . . , xn) = p(x1, .., xk) on the probability space
([0, 1]k,B,P), where B is the Borel σ-algebra and P is the Lebesgue mea-
sure.

Proof. Let Sa,b(n) be the number of points (x1, . . . , xk) satisfying

p(x1, . . . , xk) ∈ [nka, nkb] .

This means
Sa,b(n)

nk
= Fn(b)− Fn(a) ,

where Fn is the distribution function ofXn. The result follows from the fact
that Fn(b)−Fn(a) = Sa,b(n)/n

k is a Riemann sum approximation of the in-
tegral F (b)−F (a) =

∫

Aa,b
1 dx, where Aa,b = {x ∈ [0, 1]k | X(x1, . . . , xk) ∈

(a, b) }. �

Definition. Lets call the limiting distribution the distribution of the sym-
metric Diophantine equation. By the lemma, it is clearly a piecewise smooth
function.
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Example. For k = 1, we have F (s) = P [X(x) ≤ s] = P [xm ≤ s] = s1/m/n.
The distribution for k = 2 for p(x, y) = x2 + y2 and p(x, y) = x2 − y2

were plotted in the first part of these notes. The distribution function of
p(x1, x2, . . . , xk) is a k′th convolution product Fk = F ⋆ · · · ⋆ F , where
F (s) = O(s1/m) near s = 0. The asymptotic distribution of p(x, y) = x2+y2

is bounded for all m. The asymptotic distribution of p(x, y) = x2 − y2

is unbounded near s = 0 Proof. We have to understand the laws of the
random variablesX(x, y) = x2+y2 on [0, 1]2. We can see geometrically that
(π/4)s2 ≤ FX(s) ≤ s2. The density is bounded. For Y (x, y) = x2 − y2, we
use polar coordinates F (s) = {(r, θ) | r2 cos(2θ)/2 ≤ s }. Integration shows
that F (s) = Cs2 + f(s), where f(s) grows logarithmically as − log(s). For
m > 2, the area xm − ym ≤ s is piecewise differentiable and the derivative
stays bounded.

Remark. If p is a polynomial of k variables of degree k. If the density
f = F ′ of the asymptotic distribution is unbounded, then then there are
solutions to the symmetric Diophantine equation p(x) = p(y).

Corollary 5.11.4. (Generalized Wroblewski) Wroblewski’s result extends to
polynomials p of degree k for which at least one variable appears in a term
of degree smaller than k.

Proof. We can assume without loss of generality that the first variable
is the one with a smaller degree m. If the variable x1 appears only in
terms of degree k − 1 or smaller, then the polynomial p maps the finite
space [0, n]k/m× [0, n]k−1 with nk+k/m−1 = nk+ǫ elements into the interval
[min(p),max(p)] ⊂ [−Cnk, Cnk]. Apply the pigeon hole principle. �

Example. Let us illustrate this in the case p(x, y, z, w) = x4+x3+z4+w4.
Consider the finite probability space Ωn = [0, n]× [0, n]× [0, n4/3]× [0, n]
with n4+1/3. The polynomial maps Ωn to the interval [0, 4n4]. The pigeon
hole principle shows that there are matches.

Theorem 5.11.5. If the density fp of the random variable p on a surface
Ω ⊂ [0, n]k is larger than k!, then there are nontrivial solutions to p(x) =
p(y).

In general, we try to find a subsets Ω ⊂ [0, n]k ⊂ Rk which contains nk−β

points which is mapped by X into [0, nm−α]. This includes surfaces, sub-
sets or points, where the density of X is large. To decide about this, we
definitely have to know the density of X on subsets. This works often be-
cause the polynomials p modulo some integer number L do not cover all
the conjugacy classes. Much of the research in this part of Diophantine
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equations is devoted to find such subsets and hopefully parameterize all of
the solutions.

0.5

1

1.5

2

Figure. X(x, y, z) = x3 + y3 + z3.

0.5

1

1.5

2

2.5

3

Figure. X(x, y, z) = x3 + y3 − z3

Exercise. Show that there are infinitely many integers which can be written
in non trivially different ways as x4 + y4 + z4 − w2.

Remark. Here is a heuristic argument for the ”rule of thumb” that the Euler
Diophantine equation xm1 + ·+ xmk = xm0 has infinitely many solutions for
k ≥ m and no solutions if k < m.

For given n, the finite probability space Ω = {(x1, . . . , xk) | 0 ≤ xi < n1/m }
contains nk/m different vectors x = (x1, . . . , xk). Define the random variable

X(x) = (xm1 + · · ·+ xmk )1/m .

We expect that X takes values 1/nk/m = nm/k close to an integer for large
n because Y (x) = X(x) mod 1 is expected to be uniformly distributed on
the interval [0, 1) as n→ ∞.

How close do two values Y (x), Y (y) have to be, so that Y (x) = Y (y)?
Assume Y (x) = Y (y) + ǫ. Then

X(x)m = X(y)m + ǫX(y)m−1 +O(ǫ2)

with integers X(x)m, X(y)m. If X(y)m−1ǫ < 1, then it must be zero so that
Y (x) = Y (y). With the expected ǫ = nm/k and X(y)m−1 ≤ Cn(m−1)/m we
see we should have solutions if k > m − 1 and none for k < m − 1. Cases
like m = 3, k = 2, the Fermat Diophantine equation

x3 + y3 = z3
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are tagged as threshold cases by this reasoning.

This argument has still to be made rigorous by showing that the distri-
bution of the points f(x) mod 1 is uniform enough which amounts to
understand a dynamical system with multidimensional time. We see nev-
ertheless that probabilistic thinking can help to bring order into the zoo
of Diophantine equations. Here are some known solutions, some written in
the Lander notation

xm = (x1, . . . , xk)
m = xm1 + · · ·+ xmk .

m = 2, k = 2: x2 + y2 = z2 Pythagorean triples like 32 + 42 = 52 (1900 BC).

m = 3, k = 2: x3 + y3 = z3 impossible, by Fermat’s theorem.

m = 3, k = 3: x3 + y3 + u3 = v3 derived from taxicab numbers, like 103 + 93 = 13 + 123 (Viete 1591).

m = 4, k = 3: 26824404 + 153656394 + 187967604 = 206156734 (Elkies 1988 [23])

m = 5, k = 3: like x5 + y5 + z5 = w5 is open

m = 4, k = 4: 304 + 1204 + 2724 + 3154 = 3534. (R. Norrie 1911 [35])

m = 5, k = 4 275 + 845 + 1105 + 1335 = 1445 (Selfridge, Lander, Parkin 1967).

m = 6, k = 5: x6 + y6 + z6 + u6 + v6 = w6 is open.

m = 6, k = 7: (74, 234, 402, 474, 702, 894, 1077)6 = 11416.

m = 7, k = 7: (525, 439, 430, 413, 266, 258, 127)7 = 5687 (Mark Dodrill, 1999)

m = 8, k = 8: (1324, 1190, 1088, 748, 524, 478, 223, 90)8 = 14098 (Scott Chase)

m = 9, k = 10:(851, 822, 668, 625, 574, 542, 475, 179, 99, 42)9 = 9179 (Wroblewski, 2001)

m = 9, k = 11:(247, 202, 167, 133, 108, 87, 74, 30, 8, 5, 1)9 = 2529 (Chase, Aloril 2002)

m = 9, k = 12: (91, 91, 89, 71, 68, 65, 43, 42, 19, 16, 13, 5)9 = 1039(Jean-Charles Meyrignac,1997)

Remark added February 2017: Berned Eggen looked at some statistics in
the case m = 6, k = 7 (which he calls [6.1.7]) and noticed that solutions
can occur in 2 different cases:
a) if the single term is divisible by 7 then all 7 summands aren’t (for
primitive solutions), and from a probability point of view that’s more likely
as 6/7 of all integers are allowed for the 7 terms.
b) if the single (left-side) term is not divisible by 7 then all but 1 of the
right terms are required to be divisible by 7, much more of a constraint,
the first solution where the single term is not divisible by 7, happens at
much larger numbers (from y = 34781).

5.12 Continuity of random variables

Let X be a random variable on a probability space (Ω,A,P). How can
we see from the characteristic function φX whether X is continuous or
not? If it is continuous, how can we deduce from the characteristic function
whether X is absolutely continuous or not? The first question is completely
answered by Wieners theorem given below. The decision about singular
or absolute continuity is more subtle. There is a necessary condition for
absolute continuity:
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Theorem 5.12.1 (Riemann Lebesgue-lemma). If X ∈ L1, then φX(n) → 0
for |n| → ∞.

Proof. Given ǫ > 0, choose n so large that the n’th Fourier approximation
Xn(x) =

∑n
k=−n φX(n)einx satisfies ||X −Xn||1 < ǫ. For m > n, we have

φm(Xn) = E[eimXn ] = 0 so that

|φX(m)| = |φX−Xn(m)| ≤ ||X −Xn||1 ≤ ǫ .

�

Remark. The Riemann-Lebesgue lemma can not be reversed. There are
random variables X for which φX(n) → 0, but which X is not in L1.

Here is an example of a criterion for the characteristic function which as-
sures that X is absolutely continuous:

Theorem 5.12.2 (Convexity). If an = a−n satisfies an → 0 for n → ∞ and
an+1 − 2an + an−1 ≥ 0, then there exists a random variable X ∈ L1 for
which φX(n) = an.

Proof. We follow [48].
(i) bn = an − an+1 decreases monotonically.
Proof: the convexity condition is equivalent to an − an+1 ≤ an−1 − an.
(ii) bn = an − an+1 is non-negative for all n.
Proof: bn decreases monotonically. If some bn = c < 0, then by (i), also
bm ≤ c for all m contradicting the assumption that bn → 0.
(iii) Also nbn goes to zero.
Proof: Because

∑n
k=1(ak−ak+1) = a1−an+1 is bounded and the summands

are positive, we must have k(ak − ak+1) → 0.
(iv)

∑n
k=1 k(ak−1 − 2ak + ak+1) → 0 for n→ ∞.

Proof. This sum simplifies to a0 − an+1 − n(an − an+1. By (iiii), it goes to
0 for n→ ∞.
(v) The random variable Y (x) =

∑∞
k=1 k(ak−1 − 2ak + ak+1)Kk(x) is in

L1, if Kk(x) is the Féjer kernel with Fourier coefficients 1− |j|/(k + 1).
Proof. The Féjer kernel is a positive summability kernel and satisfies

||Kk||1 =
1

2π

∫ 2π

0

Kk(x) dx = 1 .

for all k. The sum converges by (iv).
(vi) The random variables X and Y have the same characteristic functions.
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Proof.

φY (n) =

∞
∑

k=1

k(ak−1 − 2ak + ak+1)K̂k(n)

=

∞
∑

k=1

k(ak−1 − 2ak + ak+1)(1 −
|j|
k + 1

)

=

∞
∑

n+1

k(ak−1 − 2ak + ak+1)(1−
|j|
k + 1

) = an .

�

For bounded random variables, the existence of a discrete component of
the random variable X is decided by the following theorem. It will follow
from corollary (5.12.5) given later on.

Theorem 5.12.3 (Wiener theorem). Given X ∈ L∞ with law µ supported
in [−π, π] and characteristic function φ = φX . Then

lim
n→∞

1

n

n
∑

k=1

|φX(k)|2 =
∑

x∈R

P[X = x]2 .

Therefore, X is continuous if and only if the Wiener averages
1
n

∑n
k=1 |φX(k)|2 converge to 0.

Lemma 5.12.4. If µ is a measure on the circle T with Fourier coefficients
µ̂k, then for every x ∈ T, one has

µ({x}) = lim
n→∞

1

2n+ 1

n
∑

k=−n
µ̂ke

ikx .

Proof. We follow [48]. The Dirichlet kernel

Dn(t) =

n
∑

k=−n
eikt =

sin((k + 1/2)t)

sin(t/2)

satisfies

Dn ⋆ f(x) = Sn(f)(x) =

n
∑

k=−n
f̂(k)eikx .
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The functions

fn(t) =
1

2n+ 1
Dn(t− x) =

1

2n+ 1

n
∑

k=−n
e−inxeint

are bounded by 1 and go to zero uniformly outside any neighborhood of
t = x. From

lim
ǫ→0

∫ x+ǫ

x−ǫ
|d(µ− µ({x})δx)| = 0

follows
lim
n→∞

〈fn, µ− µ({x})〉 = 0

so that

〈fn, µ− µ({x})〉 = 1

2n+ 1

n
∑

k=−n
φ(n)einx − µ({x}) → 0 .

�

Definition. If µ and ν are two measures on (Ω = T,A), then its convolution
is defined as

µ ⋆ ν(A) =

∫

T

µ(A− x) dν(x)

for any A ∈ A. Define for a measure on [−π, π] also µ∗(A) = µ(−A).
Remark. We have µ̂∗(n) = µ̂(n) and ˆµ ⋆ ν(n) = µ̂(n)ν̂(n). If µ =

∑

ajδxj

is a discrete measure, then µ∗ =
∑

ajδ−xj . Because µ ⋆ µ
∗ =

∑

j |aj |2, we
have in general

(µ ⋆ µ∗)({0}) =
∑

x∈T

|µ({x})2| .

Corollary 5.12.5. (Wiener)
∑

x∈T |µ({x})|2 = limn→∞
1

2n+1

∑n
k=−n |µ̂n|2.

Remark. For bounded random variables, we can rescale the random vari-
able so that their values is in [−π, π] and so that we can use Fourier series
instead of Fourier integrals. We have also

∑

x∈R

|µ({x})|2 = lim
R→∞

1

2R

∫ R

−R
|µ̂(t)|2 dt .

We turn our attention now to random variables with singular continuous
distribution. For these random variables, one does have P[X = c] = 0 for
all c. Furthermore, the distribution function FX of such a random variable
X does not have a density. The graph of FX looks like a Devil staircase.
Here is a refinement of the notion of continuity for measures.
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Definition. Given a function h : R → [0,∞) satisfying limx→0 h(x) = 0. A
measure µ on the real line or on the circle is called uniformly h-continuous,
if there exists a constant C such that for all intervals I = [a, b] on T the
inequality

µ(I) ≤ Ch(|I|)
holds, where |I| = b − a is the length of I. For h(x) = xα with 0 < α ≤ 1,
the measure is called uniformly α-continuous. It is then the derivative of a
α-Hölder continuous function.

Remark. If µ is the law of a singular continuous random variable X with
distribution function FX , then FX is α-Hölder continuous if and only if µ is
α-continuous. For general h, one calls F uniformly lip− h continuous [88].

Theorem 5.12.6 (Y. Last). If there exists C, such that 1
n

∑n
k=1 |µ̂k|2 <

C · h( 1n ) for all n ≥ 0, then µ is uniformly
√
h-continuous.

Proof. We follow [57]. The Dirichlet kernel satisfies

n
∑

k=−n
|µ̂k|2 =

∫ ∫

T2

Dn(y − x) dµ(x)dµ(y)

and the Féjer kernel Kn(t) satisfies

Kn(t) =
1

n+ 1

(

sin(n+1
2 t)

sin(t/2)

)2

=

n
∑

k=−n
(1− |k|

n+ 1
)eikt

= Dn(t)−
n
∑

k=−n

|k|
n+ 1

eikt .

Therefore

0 ≤ 1

n+ 1

n
∑

k=−n
|k||µk|2 =

∫

T

∫

T

(Dn(y − x)−Kn(y − x))dµ(x)dµ(y)

=

n
∑

k=−n
|µ̂k|2 −

∫

T

∫

T

Kn(y − x)dµ(x)dµ(y) . (5.4)

Because µ̂n = µ̂−n, we can also sum from −n to n, changing only the

constant C. If µ is not uniformly
√
h continuous, there exists a sequence

of intervals |Ik| → 0 with µ(Il) ≥ l
√

h(|Il|). A property of the Féjer kernel
Kn(t) is that for large enough n, there exists δ > 0 such that 1

nKn(t) ≥
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δ > 0 if 1 ≤ n|t| ≤ π/2. Choose nl, so that 1 ≤ nl · |Il| ≤ π/2. Using
estimate (5.4), one gets

nl
∑

k=−nl

|µ̂k|2
nl

≥
∫

T

∫

T

Knl
(y − x)

nl
dµ(x)dµ(y)

≥ δµ(Il)
2 ≥ δl2h(|Il|)

≥ C · h( 1
nl

) .

This contradicts the existence of C such that

1

n

n
∑

k=−n
|µ̂k|2 ≤ Ch(

1

n
) .

�

Theorem 5.12.7 (Strichartz). Let µ be a uniformly h-continuous measure
on the circle. There exists a constant C such that for all n

1

n

n
∑

k=1

| ˆ(µ)k|2 ≤ C · h( 1
n
) .

Proof. The computation ([105, 106] for the Fourier transform was adapted
to Fourier series in [51]). In the following computation, we abbreviate dµ(x)
with dx:

1

n

n−1
∑

k=−n
|µ̂|2k ≤1 e

∫ 1

0

n−1
∑

k=−n

e−
(k+θ)2

n2

n
dθ |µ̂k|2

=2 e

∫ 1

0

n−1
∑

k=−n

e−
(k+θ)2

n2

n

∫

T2

e−i(y−x)k dxdydθ

=3 e

∫

T2

∫ 1

0

n−1
∑

k=−n

e−
(k+θ)2

n2 −i(x−y)k

n
dθdxdy

=4 e

∫

T2

∫ 1

0

e−
(x−y)2n2

4 +i(x−y)θ

n−1
∑

k=−n

e−(k+θ
n +i(x−y)n

2 )2

n
dθdxdy
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and continue

1

n

n−1
∑

k=−n
|µ̂|2k ≤5 e

∫

T2

e−(x−y)2 n2

4 |
∫ 1

0

n−1
∑

k=−n

e−(ik+θ
n +(x−y)n

2 )2

n
dθ| dxdy

=6 e

∫

T2

[

∫ ∞

−∞

e−( t
n+i(x−y)n

2 )2

n
dt]e−(x−y)2 n2

4 dxdy

=7 e
√
π

∫

T2

(e−(x−y)2 n2

4 ) dxdy

≤8 e
√
π(

∫

T2

e−(x−y)2 n2

2 dx dy)1/2

=9 e
√
π(

∞
∑

k=0

∫

k/n≤|x−y|≤(k+1)/n

e−(x−y)2 n2

2 dx dy)1/2

≤10 e
√
πC1h(n

−1)(
∞
∑

k=0

e−k
2/2)1/2

≤11 Ch(n−1) .

Here are some remarks about the steps done in this computation:
(1) is the trivial estimate

e

∫ 1

0

n−1
∑

k=−n

e−
(k+θ)2

n2

n
dθ ≥ 1

(2)
∫

T2

e−i(y−x)k dµ(x)dµ(y) =

∫

T

e−iykdµ(x)

∫

T

eixkdµ(x) = µ̂kµ̂k = |µ̂k|2

(3) uses Fubini’s theorem.
(4) is a completion of the square.
(5) is the Cauchy-Schwartz inequality,

(6) replaces a sum and the integral
∫ 1

0
by

∫∞
−∞,

(7) uses
∫∞
−∞

e−( t
n

+i(x−y) n
2

)2

n dt =
√
π because

∫ ∞

−∞

e−(t/n+b)2

n
dt =

√
π

for all n and complex b,
(8) is Jensen’s inequality.
(9) splits the integral over a sum of small intervals of strips of width 1/n.
(10) uses the assumption that µ is h-continuous.
(11) This step uses that

(

∞
∑

k=0

e−k
2/2)1/2
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is a constant. �
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Kolmogorov zero-one law, 38
Komatsu lemma, 147
Koopman operator, 113
Kronecker lemma, 163
Kullback-Leibler divergence, 106
Kunita-Watanabe inequality, 268
kurtosis, 93

Lévy theorem, 82
Lèvy formula, 117
Lander notation, 357
Langevin equation, 275
Laplace transform, 122
Laplace-Beltrami operator, 311
Laplacian, 183
Laplacian on Bethe lattice, 181
last exit time, 144
last visit, 177
Last’s theorem, 361
lattice animal, 283
lattice distribution, 328
law

group valued random variable,
335

iterated logarithm, 124
random vector, 308, 314
symmetric Diophantine equa-

tion, 353
uniformly h-continuous, 361

law of a random variable, 61
law of arc-sin, 177
law of cosines, 55
law of group valued random vari-

able, 328
law of iterated logarithm, 164
law of large numbers, 56
law of large numbers

strong, 69, 70, 76
weak, 58

law of total variance, 135
Lebesgue decomposition theorem,

86
Lebesgue dominated convergence,

48

Lebesgue integral, 9
Lebesgue measurable, 26
Lebesgue thorn, 222
lemma

Borel-Cantelli, 38, 39
Carathéodory, 36
Fatou, 47
Riemann-Lebesgue, 358
Komatsu, 147

length, 55
lexicographical ordering, 66
likelihood coefficient, 105
limit theorem

de Moive-Laplace, 101
Poisson, 102

linear estimator, 301
linearized Vlasov flow, 312
lip-h continuous, 361
Lipshitz continuous, 207
locally Hölder continuous, 207
log normal distribution, 45, 87
logistic map, 21

Möbius function, 351
Marilyn vos Savant, 17
Markov chain, 194
Markov operator, 113, 326
Markov process, 194
Markov process existence, 194
Markov property, 194
martingale, 138, 223
martingale inequality, 166
martingale strategy, 16
martingale transform, 142
martingale, etymology, 139
matrix cocycle, 325
maximal ergodic theorem of Hopf,

74
maximum likelihood estimator, 302
Maxwell distribution, 63
Maxwell-Boltzmann distribution,

109
mean direction, 328, 330
mean measure

Poisson process, 320
mean size, 286
mean size

open cluster, 291
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mean square error, 302
mean vector, 200
measurable

progressively, 219
measurable map, 27, 28
measurable space, 25
measure, 32
measure , finite37

absolutely continuous, 103
algebra, 34
equilibrium, 233
outer, 35
positive, 37
push-forward, 61, 213
uniformly h-continuous, 361
Wiener , 214

measure preserving transformation,
73

median, 81
Mehler formula, 247
Mertens conjecture, 351
metric space, 280
micro-canonical ensemble, 108, 111
minimal filtration, 218
Minkowski inequality, 51
Minkowski theorem, 340
Mises distribution, 330
moment, 44
moment

formula, 92
generating function, 44, 92,

122
measure, 314
random vector, 314

moments, 92
monkey, 40
monkey typing Shakespeare, 40
Monte Carlo

integral, 9
Monte Carlo method, 23
Multidimensional Bernstein theo-

rem, 316
multivariate distribution function,

314

neighboring points, 283
net winning, 143
normal distribution, 45, 86, 104

normal number, 69
normality of numbers, 69
normalized random variable, 45
nowhere differentiable, 208
NP complete, 349
nuclear reactions, 141
null at 0, 139
number of open clusters, 292

operator
Koopman, 113
Markov, 113
Perron-Frobenius, 113
Schrödinger, 20
symmetric, 239

Ornstein-Uhlenbeck process, 210
oscillator, 243
outer measure, 35

page rank, 194
paradox

Bertrand, 15
Petersburg, 16
three door , 17

partial exponential function, 117
partition, 29
path integral, 187
percentage drift, 274
percentage volatility, 274
percolation, 18
percolation

bond, 18
cluster, 18
dependent, 19

percolation probability, 284
perpendicular, 55
Perron-Frobenius operator, 113
perturbation of rank one, 295
Petersburg paradox, 16
Picard iteration, 276
pigeon hole principle, 352
pivotal edge, 289
Planck constant, 123, 186
point process, 320
Poisson distribution, 88
Poisson equation, 221, 311
Poisson limit theorem, 102
Poisson process, 224, 320
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Poisson process
existence, 320

Pollard ρ method, 23
Pollare ρ method, 348
Polya theorem

random walks, 170
Polya urn scheme, 141
population growth, 141
portfolio, 168
position operator, 260
positive cone, 113
positive measure, 37
positive semidefinite, 209
postulates of Keynes, 29
power distribution, 61
previsible process, 142
prime number theorem, 351
probability

P[A ≥ c] , 51
conditional, 28

probability density function, 61
probability generating function, 92
probability space, 27
process

bounded, 142
finite variation, 264
increasing, 264
previsible, 142

process indistinguishable, 206
progressively measurable, 219
pseudo random number generator,

23, 348
pull back set, 27
pure point spectrum, 294
push-forwardmeasure, 61, 213, 308
Pythagoras theorem, 55
Pythagorean triples, 351, 357

quantummechanical oscillator, 243

Rényi’s theorem, 323
Rademacher function, 45
Radon-Nykodym theorem, 129
random circle map, 324
random diffeomorphism, 324
random field, 213
random number generator, 61
random variable, 28

random variable
Lp, 48

absolutely continuous, 85
arithmetic, 342
centered, 45
circle valued, 327
continuous, 61, 85
discrete, 85
group valued, 335
integrable, 43
normalized, 45
singular continuous, 85
spherical, 335
symmetric, 123
uniformly integrable, 67

random variable independent, 32
random vector, 28
random walk, 18, 169
random walk

last visit, 177
rank one perturbation, 295
Rao-Cramer bound, 305
Rao-Cramer inequality, 304
Rayleigh distribution, 63
reflected Brownian motion, 223
reflection principle, 174
regression line, 53
regular conditional probability, 134
relative entropy, 105
relative entropy

circle valued random variable,
328

resultant length, 328
Riemann hypothesis, 351
Riemann integral, 9
Riemann zeta function, 42, 351
Riemann-Lebesgue lemma, 358
right continuous filtration, 218
ring, 37
risk function, 302
ruin probability, 148
ruin problem, 148
Russo’s formula, 289

Schrödinger equation, 186
Schrödinger operator, 20
score function, 304
SDE, 273
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semimartingale, 138
set of continuity points, 96
Shakespeare, 40
Shannon entropy , 94
significant digit, 327
silver ratio, 174
Simon-Wolff criterion, 297
singular continuous distribution,

85
singular continuous random vari-

able, 85
solution

differential equation, 279
spectral measure, 185
spectrum, 20
spherical random variable, 335
Spitzer theorem, 252
stake of game, 143
Standard Brownian motion, 200
standard deviation, 44
standard normal distribution, 98,

104
state space, 193
statement

almost everywhere, 43
stationary measure, 196
stationary measure

discrete Markov process, 326
ergodic, 326
random map, 326

stationary state, 116
statistical model, 300
step function, 43
Stirling formula, 177
stochastic convergence, 55
stochastic differential equation, 273
stochastic differential equation

existence, 277
stochastic matrix, 186, 191, 192,

195
stochastic operator, 113
stochastic population model, 274
stochastic process, 199
stochastic process

discrete, 137
stocks, 168
stopped process, 145
stopping time, 144, 218

stopping time for random walk,
174

Strichartz theorem, 362
strong convergence

operators, 239
strong law

Brownian motion, 207
strong law of large numbers for

Brownian motion, 207
sub-critical phase, 286
subadditive, 153
subalgebra, 26
subalgebra independent, 32
subgraph, 283
submartingale, 138, 223
submartingale inequality, 164
submartingale inequality

continuous martingales, 226
sum circular random variables, 332
sum of random variables, 73
super-symmetry, 246
supercritical phase, 286
supermartingale, 138, 223
support of a measure, 326
symmetric Diophantine equation,

351
symmetric operator, 239
symmetric random variable, 123
symmetric random walk, 182
systematic error, 301

tail σ-algebra, 38
taxi-cab number, 352
taxicab numbers, 357
theorem

Ballot, 176
Banach-Alaoglu, 96
Beppo-Levi, 46
Birkhoff, 21
Birkhoff ergodic, 75
bounded dominated conver-

gence, 48
Carathéodory continuation, 34
central limit, 126
dominated convergence, 48
Doob convergence, 161
Doob’s convergence, 151
Dynkin-Hunt, 230
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Helly, 96
Kolmogorov, 79
Kolmogorov’s 0− 1 law, 38
Lévy, 82
Last, 361
Lebesgue decomposition, 86
martingale convergence, 160
maximal ergodic theorem, 74
Minkowski, 340
monotone convergence, 46
Polya, 170
Pythagoras, 55
Radon-Nykodym, 129
Strichartz, 362
three series , 80
Tychonov, 96
Voigt, 114
Weierstrass, 57
Wiener, 359, 360
Wroblewski, 352

thermodynamic equilibrium, 116
thermodynamic equilibrium mea-

sure, 178
three door problem, 17
three series theorem, 80
tied down process, 211
topological group, 335
total variance

law, 135
transfer operator, 326
transform

Fourier, 116
Laplace, 122
martingale, 142

transition probability function, 193
tree, 179
trivial σ-algebra, 38
trivial algebra, 25, 28
Tychonov theorem, 41
Tychonovs theorem, 96

uncorrelated, 52, 54
uniform distribution, 87, 88
uniform distribution

circle valued random variable,
331

uniformly h-continuous measure,
361

uniformly integrable, 58, 67
up-crossing, 150
up-crossing inequality, 150
urn scheme, 141
utility function, 16

variance, 44
variance

Cantor distribution, 136
conditional, 135

variation
stochastic process, 264

vector valued random variable, 28
vertex of a graph, 283
Vitali, Giuseppe, 17
Vlasov flow, 306
Vlasov flow Hamiltonian, 306
von Mises distribution, 330

Wald identity, 149
weak convergence

by characteristic functions, 118
for measures, 233
measure , 95
random variable, 96

weak law of large numbers, 56, 58
weak law of large numbers for L1,

58
Weierstrass theorem, 57
Weyl formula, 249
white noise, 12, 213
Wick ordering, 260
Wick power, 260
Wick, Gian-Carlo, 260
Wiener measure, 214
Wiener sausage, 250
Wiener space, 214
Wiener theorem, 359
Wiener, Norbert, 205
Wieners theorem, 360
wrapped normal distribution, 328,

331
Wroblewski theorem, 352

zero-one law of Blumental, 231
zero-one law of Kolmogorov, 38
Zeta function, 351


